End of training
Browse files
README.md
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: cc-by-4.0
|
4 |
+
base_model: Goader/liberta-large
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- universal_dependencies
|
9 |
+
metrics:
|
10 |
+
- precision
|
11 |
+
- recall
|
12 |
+
- f1
|
13 |
+
- accuracy
|
14 |
+
model-index:
|
15 |
+
- name: liberta-large-upos
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
name: Token Classification
|
19 |
+
type: token-classification
|
20 |
+
dataset:
|
21 |
+
name: universal_dependencies
|
22 |
+
type: universal_dependencies
|
23 |
+
config: uk_iu
|
24 |
+
split: validation
|
25 |
+
args: uk_iu
|
26 |
+
metrics:
|
27 |
+
- name: Precision
|
28 |
+
type: precision
|
29 |
+
value: 0.8100632457506624
|
30 |
+
- name: Recall
|
31 |
+
type: recall
|
32 |
+
value: 0.7466487546768732
|
33 |
+
- name: F1
|
34 |
+
type: f1
|
35 |
+
value: 0.7541998712736135
|
36 |
+
- name: Accuracy
|
37 |
+
type: accuracy
|
38 |
+
value: 0.8675486133248327
|
39 |
+
---
|
40 |
+
|
41 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
42 |
+
should probably proofread and complete it, then remove this comment. -->
|
43 |
+
|
44 |
+
# liberta-large-upos
|
45 |
+
|
46 |
+
This model is a fine-tuned version of [Goader/liberta-large](https://huggingface.co/Goader/liberta-large) on the universal_dependencies dataset.
|
47 |
+
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: 0.3346
|
49 |
+
- Precision: 0.8101
|
50 |
+
- Recall: 0.7466
|
51 |
+
- F1: 0.7542
|
52 |
+
- Accuracy: 0.8675
|
53 |
+
|
54 |
+
## Model description
|
55 |
+
|
56 |
+
More information needed
|
57 |
+
|
58 |
+
## Intended uses & limitations
|
59 |
+
|
60 |
+
More information needed
|
61 |
+
|
62 |
+
## Training and evaluation data
|
63 |
+
|
64 |
+
More information needed
|
65 |
+
|
66 |
+
## Training procedure
|
67 |
+
|
68 |
+
### Training hyperparameters
|
69 |
+
|
70 |
+
The following hyperparameters were used during training:
|
71 |
+
- learning_rate: 5e-05
|
72 |
+
- train_batch_size: 16
|
73 |
+
- eval_batch_size: 8
|
74 |
+
- seed: 42
|
75 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
76 |
+
- lr_scheduler_type: linear
|
77 |
+
- num_epochs: 10
|
78 |
+
|
79 |
+
### Training results
|
80 |
+
|
81 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
82 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
83 |
+
| No log | 1.0 | 338 | 1.0412 | 0.5939 | 0.4306 | 0.4617 | 0.5790 |
|
84 |
+
| No log | 2.0 | 676 | 0.6850 | 0.6114 | 0.5788 | 0.5745 | 0.7115 |
|
85 |
+
| No log | 3.0 | 1014 | 0.6075 | 0.6787 | 0.6205 | 0.6241 | 0.7389 |
|
86 |
+
| No log | 4.0 | 1352 | 0.5585 | 0.7178 | 0.6393 | 0.6425 | 0.7608 |
|
87 |
+
| No log | 5.0 | 1690 | 0.4762 | 0.7424 | 0.6737 | 0.6874 | 0.7984 |
|
88 |
+
| No log | 6.0 | 2028 | 0.4203 | 0.7159 | 0.6962 | 0.6946 | 0.8228 |
|
89 |
+
| No log | 7.0 | 2366 | 0.4275 | 0.7403 | 0.7081 | 0.7028 | 0.8205 |
|
90 |
+
| No log | 8.0 | 2704 | 0.3789 | 0.7909 | 0.7189 | 0.7282 | 0.8470 |
|
91 |
+
| No log | 9.0 | 3042 | 0.3431 | 0.8051 | 0.7415 | 0.7484 | 0.8626 |
|
92 |
+
| No log | 10.0 | 3380 | 0.3346 | 0.8101 | 0.7466 | 0.7542 | 0.8675 |
|
93 |
+
|
94 |
+
|
95 |
+
### Framework versions
|
96 |
+
|
97 |
+
- Transformers 4.44.2
|
98 |
+
- Pytorch 2.4.1+cu121
|
99 |
+
- Datasets 3.0.1
|
100 |
+
- Tokenizers 0.19.1
|