izaitova commited on
Commit
6e8b8e4
·
verified ·
1 Parent(s): 938a2b7

End of training

Browse files
Files changed (1) hide show
  1. README.md +100 -0
README.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: cc-by-4.0
4
+ base_model: Goader/liberta-large
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - universal_dependencies
9
+ metrics:
10
+ - precision
11
+ - recall
12
+ - f1
13
+ - accuracy
14
+ model-index:
15
+ - name: liberta-large-upos
16
+ results:
17
+ - task:
18
+ name: Token Classification
19
+ type: token-classification
20
+ dataset:
21
+ name: universal_dependencies
22
+ type: universal_dependencies
23
+ config: uk_iu
24
+ split: validation
25
+ args: uk_iu
26
+ metrics:
27
+ - name: Precision
28
+ type: precision
29
+ value: 0.8100632457506624
30
+ - name: Recall
31
+ type: recall
32
+ value: 0.7466487546768732
33
+ - name: F1
34
+ type: f1
35
+ value: 0.7541998712736135
36
+ - name: Accuracy
37
+ type: accuracy
38
+ value: 0.8675486133248327
39
+ ---
40
+
41
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
42
+ should probably proofread and complete it, then remove this comment. -->
43
+
44
+ # liberta-large-upos
45
+
46
+ This model is a fine-tuned version of [Goader/liberta-large](https://huggingface.co/Goader/liberta-large) on the universal_dependencies dataset.
47
+ It achieves the following results on the evaluation set:
48
+ - Loss: 0.3346
49
+ - Precision: 0.8101
50
+ - Recall: 0.7466
51
+ - F1: 0.7542
52
+ - Accuracy: 0.8675
53
+
54
+ ## Model description
55
+
56
+ More information needed
57
+
58
+ ## Intended uses & limitations
59
+
60
+ More information needed
61
+
62
+ ## Training and evaluation data
63
+
64
+ More information needed
65
+
66
+ ## Training procedure
67
+
68
+ ### Training hyperparameters
69
+
70
+ The following hyperparameters were used during training:
71
+ - learning_rate: 5e-05
72
+ - train_batch_size: 16
73
+ - eval_batch_size: 8
74
+ - seed: 42
75
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
76
+ - lr_scheduler_type: linear
77
+ - num_epochs: 10
78
+
79
+ ### Training results
80
+
81
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
+ | No log | 1.0 | 338 | 1.0412 | 0.5939 | 0.4306 | 0.4617 | 0.5790 |
84
+ | No log | 2.0 | 676 | 0.6850 | 0.6114 | 0.5788 | 0.5745 | 0.7115 |
85
+ | No log | 3.0 | 1014 | 0.6075 | 0.6787 | 0.6205 | 0.6241 | 0.7389 |
86
+ | No log | 4.0 | 1352 | 0.5585 | 0.7178 | 0.6393 | 0.6425 | 0.7608 |
87
+ | No log | 5.0 | 1690 | 0.4762 | 0.7424 | 0.6737 | 0.6874 | 0.7984 |
88
+ | No log | 6.0 | 2028 | 0.4203 | 0.7159 | 0.6962 | 0.6946 | 0.8228 |
89
+ | No log | 7.0 | 2366 | 0.4275 | 0.7403 | 0.7081 | 0.7028 | 0.8205 |
90
+ | No log | 8.0 | 2704 | 0.3789 | 0.7909 | 0.7189 | 0.7282 | 0.8470 |
91
+ | No log | 9.0 | 3042 | 0.3431 | 0.8051 | 0.7415 | 0.7484 | 0.8626 |
92
+ | No log | 10.0 | 3380 | 0.3346 | 0.8101 | 0.7466 | 0.7542 | 0.8675 |
93
+
94
+
95
+ ### Framework versions
96
+
97
+ - Transformers 4.44.2
98
+ - Pytorch 2.4.1+cu121
99
+ - Datasets 3.0.1
100
+ - Tokenizers 0.19.1