liberta-large-upos

This model is a fine-tuned version of Goader/liberta-large on the universal_dependencies dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3346
  • Precision: 0.8101
  • Recall: 0.7466
  • F1: 0.7542
  • Accuracy: 0.8675

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 338 1.0412 0.5939 0.4306 0.4617 0.5790
No log 2.0 676 0.6850 0.6114 0.5788 0.5745 0.7115
No log 3.0 1014 0.6075 0.6787 0.6205 0.6241 0.7389
No log 4.0 1352 0.5585 0.7178 0.6393 0.6425 0.7608
No log 5.0 1690 0.4762 0.7424 0.6737 0.6874 0.7984
No log 6.0 2028 0.4203 0.7159 0.6962 0.6946 0.8228
No log 7.0 2366 0.4275 0.7403 0.7081 0.7028 0.8205
No log 8.0 2704 0.3789 0.7909 0.7189 0.7282 0.8470
No log 9.0 3042 0.3431 0.8051 0.7415 0.7484 0.8626
No log 10.0 3380 0.3346 0.8101 0.7466 0.7542 0.8675

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
14
Safetensors
Model size
336M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for izaitova/liberta-large-upos

Finetuned
(6)
this model

Dataset used to train izaitova/liberta-large-upos

Evaluation results