liberta-large-upos
This model is a fine-tuned version of Goader/liberta-large on the universal_dependencies dataset. It achieves the following results on the evaluation set:
- Loss: 0.3346
- Precision: 0.8101
- Recall: 0.7466
- F1: 0.7542
- Accuracy: 0.8675
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 338 | 1.0412 | 0.5939 | 0.4306 | 0.4617 | 0.5790 |
No log | 2.0 | 676 | 0.6850 | 0.6114 | 0.5788 | 0.5745 | 0.7115 |
No log | 3.0 | 1014 | 0.6075 | 0.6787 | 0.6205 | 0.6241 | 0.7389 |
No log | 4.0 | 1352 | 0.5585 | 0.7178 | 0.6393 | 0.6425 | 0.7608 |
No log | 5.0 | 1690 | 0.4762 | 0.7424 | 0.6737 | 0.6874 | 0.7984 |
No log | 6.0 | 2028 | 0.4203 | 0.7159 | 0.6962 | 0.6946 | 0.8228 |
No log | 7.0 | 2366 | 0.4275 | 0.7403 | 0.7081 | 0.7028 | 0.8205 |
No log | 8.0 | 2704 | 0.3789 | 0.7909 | 0.7189 | 0.7282 | 0.8470 |
No log | 9.0 | 3042 | 0.3431 | 0.8051 | 0.7415 | 0.7484 | 0.8626 |
No log | 10.0 | 3380 | 0.3346 | 0.8101 | 0.7466 | 0.7542 | 0.8675 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
- Downloads last month
- 14
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for izaitova/liberta-large-upos
Base model
Goader/liberta-largeDataset used to train izaitova/liberta-large-upos
Evaluation results
- Precision on universal_dependenciesvalidation set self-reported0.810
- Recall on universal_dependenciesvalidation set self-reported0.747
- F1 on universal_dependenciesvalidation set self-reported0.754
- Accuracy on universal_dependenciesvalidation set self-reported0.868