Finalize Sentence Transformers integration
#3
by
tomaarsen
HF staff
- opened
- 1_Pooling/config.json +10 -0
- README.md +49 -7
- custom_st.py +22 -31
- modules.json +20 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 4096,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": true,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
CHANGED
@@ -2,6 +2,7 @@
|
|
2 |
tags:
|
3 |
- mmeb
|
4 |
- transformers
|
|
|
5 |
language:
|
6 |
- en
|
7 |
- ar
|
@@ -34,15 +35,10 @@ Our model achieves SOTA performance on MMEB benchmark.
|
|
34 |
|
35 |
## Usage
|
36 |
|
37 |
-
|
38 |
|
39 |
-
|
40 |
-
```bash
|
41 |
-
git clone https://github.com/haon-chen/mmE5.git
|
42 |
-
pip install -r requirements.txt
|
43 |
-
```
|
44 |
|
45 |
-
Then you can enter the directory to run the following command.
|
46 |
```python
|
47 |
import torch
|
48 |
import requests
|
@@ -107,6 +103,52 @@ print(string, '=', compute_similarity(qry_output, tgt_output))
|
|
107 |
## <|image|><|begin_of_text|> Represent the given image. = tensor([[0.3887]], device='cuda:0', dtype=torch.bfloat16)
|
108 |
```
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
## Citation
|
111 |
```
|
112 |
@article{chen2025mmE5,
|
|
|
2 |
tags:
|
3 |
- mmeb
|
4 |
- transformers
|
5 |
+
- sentence-transformers
|
6 |
language:
|
7 |
- en
|
8 |
- ar
|
|
|
35 |
|
36 |
## Usage
|
37 |
|
38 |
+
### Transformers
|
39 |
|
40 |
+
Below is an example we adapted from [VLM2Vec](https://huggingface.co/TIGER-Lab/VLM2Vec-Full).
|
|
|
|
|
|
|
|
|
41 |
|
|
|
42 |
```python
|
43 |
import torch
|
44 |
import requests
|
|
|
103 |
## <|image|><|begin_of_text|> Represent the given image. = tensor([[0.3887]], device='cuda:0', dtype=torch.bfloat16)
|
104 |
```
|
105 |
|
106 |
+
### Sentence Transformers
|
107 |
+
|
108 |
+
You can also use Sentence Transformers, where the majority of the pre- and post-processing has been abstracted.
|
109 |
+
|
110 |
+
```python
|
111 |
+
from sentence_transformers import SentenceTransformer
|
112 |
+
import requests
|
113 |
+
|
114 |
+
# Load the model
|
115 |
+
model = SentenceTransformer("intfloat/mmE5-mllama-11b-instruct", trust_remote_code=True)
|
116 |
+
|
117 |
+
# Download an example image of a cat and a dog
|
118 |
+
dog_cat_image_bytes = requests.get('https://github.com/haon-chen/mmE5/blob/main/figures/example.jpg?raw=true', stream=True).raw.read()
|
119 |
+
with open("cat_dog_example.jpg", "wb") as f:
|
120 |
+
f.write(dog_cat_image_bytes)
|
121 |
+
|
122 |
+
# Image + Text -> Text
|
123 |
+
image_embeddings = model.encode([{
|
124 |
+
"image": "cat_dog_example.jpg",
|
125 |
+
"text": "Represent the given image with the following question: What is in the image",
|
126 |
+
}])
|
127 |
+
text_embeddings = model.encode([
|
128 |
+
{"text": "A cat and a dog"},
|
129 |
+
{"text": "A cat and a tiger"},
|
130 |
+
])
|
131 |
+
|
132 |
+
similarity = model.similarity(image_embeddings, text_embeddings)
|
133 |
+
print(similarity)
|
134 |
+
# tensor([[0.3967, 0.3090]])
|
135 |
+
# ✅ The first text is most similar to the image
|
136 |
+
|
137 |
+
# Text -> Image
|
138 |
+
image_embeddings = model.encode([
|
139 |
+
{"image": dog_cat_image_bytes, "text": "Represent the given image."},
|
140 |
+
])
|
141 |
+
text_embeddings = model.encode([
|
142 |
+
{"text": "Find me an everyday image that matches the given caption: A cat and a dog."},
|
143 |
+
{"text": "Find me an everyday image that matches the given caption: A cat and a tiger."},
|
144 |
+
])
|
145 |
+
|
146 |
+
similarity = model.similarity(image_embeddings, text_embeddings)
|
147 |
+
print(similarity)
|
148 |
+
# tensor([[0.4250, 0.3896]])
|
149 |
+
# ✅ The first text is most similar to the image
|
150 |
+
```
|
151 |
+
|
152 |
## Citation
|
153 |
```
|
154 |
@article{chen2025mmE5,
|
custom_st.py
CHANGED
@@ -17,6 +17,7 @@ class MultiModalTransformer(BaseTransformer):
|
|
17 |
super().__init__(model_name_or_path, **kwargs)
|
18 |
if tokenizer_args is None:
|
19 |
tokenizer_args = {}
|
|
|
20 |
|
21 |
# Initialize processor
|
22 |
self.processor = AutoProcessor.from_pretrained(
|
@@ -32,6 +33,7 @@ class MultiModalTransformer(BaseTransformer):
|
|
32 |
is_peft_model: bool,
|
33 |
**model_args,
|
34 |
) -> None:
|
|
|
35 |
self.auto_model = MllamaForConditionalGeneration.from_pretrained(
|
36 |
model_name_or_path, torch_dtype=torch.bfloat16, cache_dir=cache_dir, **model_args
|
37 |
)
|
@@ -47,49 +49,38 @@ class MultiModalTransformer(BaseTransformer):
|
|
47 |
**kwargs
|
48 |
)
|
49 |
|
50 |
-
|
51 |
-
last_hidden_state = outputs.hidden_states[-1]
|
52 |
-
attention_mask = features["attention_mask"]
|
53 |
-
sentence_embedding = self._last_pooling(last_hidden_state, attention_mask)
|
54 |
-
|
55 |
-
features.update({"sentence_embedding": sentence_embedding})
|
56 |
return features
|
57 |
|
58 |
-
def _last_pooling(self, last_hidden_state: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
|
59 |
-
"""Apply last token pooling and L2 normalization"""
|
60 |
-
sequence_lengths = attention_mask.sum(dim=1) - 1
|
61 |
-
batch_size = last_hidden_state.shape[0]
|
62 |
-
reps = last_hidden_state[torch.arange(batch_size, device=last_hidden_state.device), sequence_lengths]
|
63 |
-
return torch.nn.functional.normalize(reps, p=2, dim=-1)
|
64 |
-
|
65 |
def tokenize(self, texts: List[List[Dict]] | List[str]) -> Dict[str, torch.Tensor]:
|
66 |
def process_text_item(item):
|
67 |
if isinstance(item, str):
|
68 |
-
return item,
|
69 |
|
70 |
-
text,
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
84 |
|
85 |
all_texts, all_images = [], []
|
86 |
for item in texts:
|
87 |
text, images = process_text_item(item)
|
88 |
all_texts.append(text)
|
89 |
-
all_images.
|
90 |
|
91 |
-
|
92 |
-
if all_images:
|
93 |
inputs = self.processor(
|
94 |
text=all_texts,
|
95 |
images=all_images,
|
|
|
17 |
super().__init__(model_name_or_path, **kwargs)
|
18 |
if tokenizer_args is None:
|
19 |
tokenizer_args = {}
|
20 |
+
tokenizer_args.pop("trust_remote_code", None)
|
21 |
|
22 |
# Initialize processor
|
23 |
self.processor = AutoProcessor.from_pretrained(
|
|
|
33 |
is_peft_model: bool,
|
34 |
**model_args,
|
35 |
) -> None:
|
36 |
+
model_args.pop("trust_remote_code", None)
|
37 |
self.auto_model = MllamaForConditionalGeneration.from_pretrained(
|
38 |
model_name_or_path, torch_dtype=torch.bfloat16, cache_dir=cache_dir, **model_args
|
39 |
)
|
|
|
49 |
**kwargs
|
50 |
)
|
51 |
|
52 |
+
features.update({"token_embeddings": outputs.hidden_states[-1]})
|
|
|
|
|
|
|
|
|
|
|
53 |
return features
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
def tokenize(self, texts: List[List[Dict]] | List[str]) -> Dict[str, torch.Tensor]:
|
56 |
def process_text_item(item):
|
57 |
if isinstance(item, str):
|
58 |
+
return item, None
|
59 |
|
60 |
+
text, img = "", None
|
61 |
+
if "image" in item:
|
62 |
+
text += "<|image|>"
|
63 |
+
img = item["image"]
|
64 |
+
if isinstance(img, bytes):
|
65 |
+
img = Image.open(BytesIO(img)).convert("RGB")
|
66 |
+
elif isinstance(img, str):
|
67 |
+
img = Image.open(img).convert("RGB")
|
68 |
+
elif not isinstance(img, Image):
|
69 |
+
raise ValueError(f"Unknown image type {type(img)}")
|
70 |
+
if "text" in item:
|
71 |
+
if text:
|
72 |
+
text += "<|begin_of_text|> "
|
73 |
+
text += item["text"].lstrip()
|
74 |
+
|
75 |
+
return text, img
|
76 |
|
77 |
all_texts, all_images = [], []
|
78 |
for item in texts:
|
79 |
text, images = process_text_item(item)
|
80 |
all_texts.append(text)
|
81 |
+
all_images.append(images)
|
82 |
|
83 |
+
if all_images != [None] * len(all_images):
|
|
|
84 |
inputs = self.processor(
|
85 |
text=all_texts,
|
86 |
images=all_images,
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "custom_st.MultiModalTransformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|