Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Korabbit/llama-2-ko-7b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- field: text
  format: custom
  path: /tmp/918d58d154c00c30_train_data.json
  streaming: false
  type:
    field_input: critic_response
    field_instruction: prompt
    field_output: revision_response
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: int1306866/0c048645-7c15-45d0-918b-c5fbd4ef4fd1
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 2
mlflow_experiment_name: /tmp/918d58d154c00c30_train_data.json
model_type: AutoModel
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 3ab693bf-880c-406b-a083-5469510aaeeb
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 3ab693bf-880c-406b-a083-5469510aaeeb
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

0c048645-7c15-45d0-918b-c5fbd4ef4fd1

This model is a fine-tuned version of Korabbit/llama-2-ko-7b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5190

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
0.8737 0.0002 1 0.9713
0.603 0.0047 25 0.6181
0.5995 0.0094 50 0.5486
0.5804 0.0141 75 0.5236
0.4794 0.0189 100 0.5190

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
10
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for int1306866/0c048645-7c15-45d0-918b-c5fbd4ef4fd1

Adapter
(309)
this model