Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: defog/llama-3-sqlcoder-8b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 8e91c8fc8aa471c6_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/8e91c8fc8aa471c6_train_data.json
  type:
    field_input: schema
    field_instruction: query
    field_output: response
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: 1
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: true
hub_model_id: infogep/703a864d-6540-4330-ba67-91c6deac71ad
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 30
micro_batch_size: 4
mlflow_experiment_name: /tmp/8e91c8fc8aa471c6_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 1024
special_tokens:
  pad_token: <|eot_id|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: a2b04a74-21ae-496c-999f-245629e779f7
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: a2b04a74-21ae-496c-999f-245629e779f7
warmup_steps: 5
weight_decay: 0.0
xformers_attention: true

703a864d-6540-4330-ba67-91c6deac71ad

This model is a fine-tuned version of defog/llama-3-sqlcoder-8b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3753

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5
  • training_steps: 30

Training results

Training Loss Epoch Step Validation Loss
No log 0.0008 1 0.5347
0.2934 0.0041 5 0.5258
0.3824 0.0082 10 0.4640
0.3708 0.0124 15 0.4143
0.3664 0.0165 20 0.3864
0.3799 0.0206 25 0.3767
0.4123 0.0247 30 0.3753

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
11
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for infogep/703a864d-6540-4330-ba67-91c6deac71ad

Adapter
(275)
this model