ihsanahakiim's picture
Model save
6c7cbcf verified
|
raw
history blame
3.47 kB
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: videomae-base-finetuned-ucf101-subset
    results: []

videomae-base-finetuned-ucf101-subset

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5195
  • Accuracy: 0.3557

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 832

Training results

Training Loss Epoch Step Validation Loss Accuracy
4.2583 0.0325 27 4.2251 0.0157
4.2374 1.0325 54 4.2267 0.0134
4.2678 2.0325 81 4.2263 0.0134
4.2537 3.0325 108 4.2212 0.0157
4.2401 4.0325 135 4.2065 0.0157
4.2519 5.0325 162 4.2075 0.0179
4.2198 6.0325 189 4.2055 0.0134
4.2111 7.0325 216 4.1958 0.0179
4.1871 8.0325 243 4.1474 0.0470
4.0891 9.0325 270 4.0327 0.0447
3.7963 10.0325 297 3.8218 0.0828
3.4787 11.0325 324 3.7062 0.1119
3.1883 12.0325 351 3.5887 0.1119
3.0045 13.0325 378 3.3810 0.1432
2.8045 14.0325 405 3.2212 0.2192
2.5344 15.0325 432 3.2702 0.1588
2.3725 16.0325 459 3.3600 0.1409
2.2074 17.0325 486 2.9731 0.2371
2.1094 18.0325 513 2.8680 0.2617
1.9839 19.0325 540 2.8360 0.2707
1.7354 20.0325 567 2.7890 0.2819
1.6843 21.0325 594 2.7286 0.2998
1.6266 22.0325 621 2.8062 0.2841
1.4083 23.0325 648 2.8205 0.2595
1.4422 24.0325 675 2.6407 0.3065
1.3897 25.0325 702 2.5948 0.3468
1.3906 26.0325 729 2.6295 0.3154
1.2291 27.0325 756 2.5539 0.3378
1.3166 28.0325 783 2.5200 0.3557
1.2619 29.0325 810 2.5308 0.3557
1.1393 30.0264 832 2.5856 0.3244

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0