ihsanahakiim's picture
Model save
9ec60da verified
|
raw
history blame
5.32 kB
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: videomae-base-finetuned-ucf101-subset
    results: []

videomae-base-finetuned-ucf101-subset

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0844
  • Accuracy: 0.7320

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 832

Training results

Training Loss Epoch Step Validation Loss Accuracy
4.238 0.0168 14 4.2235 0.0180
4.2658 1.0168 28 4.2075 0.0203
4.219 2.0168 42 4.2053 0.0158
4.2146 3.0168 56 4.2098 0.0225
4.1925 4.0168 70 4.1824 0.0225
4.1192 5.0168 84 4.0819 0.0383
4.0297 6.0168 98 3.9819 0.0698
3.7134 7.0168 112 3.7340 0.1036
3.5289 8.0168 126 3.4205 0.1802
3.0625 9.0168 140 3.1970 0.2613
2.8776 10.0168 154 2.9350 0.3018
2.6375 11.0168 168 2.7630 0.3604
2.2954 12.0168 182 2.4991 0.4279
2.1337 13.0168 196 2.3827 0.4324
1.8195 14.0168 210 2.2312 0.4820
1.6436 15.0168 224 2.3629 0.4459
1.6289 16.0168 238 2.1512 0.4752
1.2957 17.0168 252 2.0142 0.5023
1.2761 18.0168 266 1.9061 0.5270
1.1118 19.0168 280 1.8113 0.5495
0.9642 20.0168 294 1.7280 0.6036
0.894 21.0168 308 1.8723 0.5383
0.7974 22.0168 322 1.6585 0.6059
0.833 23.0168 336 1.5996 0.6149
0.6431 24.0168 350 1.5609 0.6149
0.5873 25.0168 364 1.6108 0.6171
0.5554 26.0168 378 1.4014 0.6532
0.4786 27.0168 392 1.4335 0.6622
0.4252 28.0168 406 1.4445 0.6509
0.382 29.0168 420 1.3915 0.6622
0.365 30.0168 434 1.2978 0.6847
0.319 31.0168 448 1.3218 0.6824
0.3167 32.0168 462 1.3496 0.6644
0.2797 33.0168 476 1.2806 0.6802
0.2864 34.0168 490 1.2191 0.7072
0.2927 35.0168 504 1.2135 0.7207
0.2698 36.0168 518 1.2507 0.6914
0.2333 37.0168 532 1.2038 0.7095
0.2366 38.0168 546 1.1517 0.7207
0.1886 39.0168 560 1.2074 0.7095
0.1804 40.0168 574 1.1658 0.7027
0.1778 41.0168 588 1.2350 0.6824
0.1728 42.0168 602 1.1638 0.7162
0.1998 43.0168 616 1.2359 0.6959
0.1727 44.0168 630 1.2321 0.6937
0.1564 45.0168 644 1.1605 0.7140
0.1888 46.0168 658 1.1609 0.7095
0.1227 47.0168 672 1.1588 0.7117
0.134 48.0168 686 1.1698 0.7072
0.1622 49.0168 700 1.2014 0.6982
0.1391 50.0168 714 1.1006 0.7162
0.1276 51.0168 728 1.1485 0.6892
0.1222 52.0168 742 1.0802 0.7140
0.1024 53.0168 756 1.1243 0.7050
0.1186 54.0168 770 1.0909 0.7297
0.1121 55.0168 784 1.1351 0.7095
0.1284 56.0168 798 1.1095 0.7275
0.0893 57.0168 812 1.0844 0.7320
0.0878 58.0168 826 1.0804 0.7297
0.0887 59.0072 832 1.0809 0.7297

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0