SentenceTransformer based on intfloat/multilingual-e5-base
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("iddqd21/fine-tuned-e5-semantic-similarity_v2")
# Run inference
sentences = [
'Tiglylcarnitine+methylcrotonylcarnitine (C5:1)',
'Adenosine monophosphate.cyclic',
'Adenosine monophosphate.cyclic',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 110,819 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 3 tokens
- mean: 10.97 tokens
- max: 39 tokens
- min: 3 tokens
- mean: 9.19 tokens
- max: 33 tokens
- min: 0.0
- mean: 0.41
- max: 1.0
- Samples:
sentence_0 sentence_1 label Methocarbamol
Methocarbamol
1.0
Busulfan
Psilocin
0.0
Zirconium
Strychnine
0.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 5multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.0722 | 500 | 0.1227 |
0.1444 | 1000 | 0.0772 |
0.2165 | 1500 | 0.0726 |
0.2887 | 2000 | 0.0668 |
0.3609 | 2500 | 0.0617 |
0.4331 | 3000 | 0.0615 |
0.5053 | 3500 | 0.056 |
0.5775 | 4000 | 0.0562 |
0.6496 | 4500 | 0.0596 |
0.7218 | 5000 | 0.0576 |
0.7940 | 5500 | 0.0531 |
0.8662 | 6000 | 0.0524 |
0.9384 | 6500 | 0.0544 |
1.0105 | 7000 | 0.0502 |
1.0827 | 7500 | 0.0411 |
1.1549 | 8000 | 0.0417 |
1.2271 | 8500 | 0.0451 |
1.2993 | 9000 | 0.041 |
1.3714 | 9500 | 0.0407 |
1.4436 | 10000 | 0.0412 |
1.5158 | 10500 | 0.0403 |
1.5880 | 11000 | 0.0407 |
1.6602 | 11500 | 0.0423 |
1.7324 | 12000 | 0.0385 |
1.8045 | 12500 | 0.039 |
1.8767 | 13000 | 0.0392 |
1.9489 | 13500 | 0.0366 |
2.0211 | 14000 | 0.0344 |
2.0933 | 14500 | 0.0312 |
2.1654 | 15000 | 0.0321 |
2.2376 | 15500 | 0.0311 |
2.3098 | 16000 | 0.0305 |
2.3820 | 16500 | 0.032 |
2.4542 | 17000 | 0.031 |
2.5263 | 17500 | 0.0284 |
2.5985 | 18000 | 0.0291 |
2.6707 | 18500 | 0.0318 |
2.7429 | 19000 | 0.0308 |
2.8151 | 19500 | 0.0292 |
2.8873 | 20000 | 0.0297 |
2.9594 | 20500 | 0.03 |
3.0316 | 21000 | 0.0268 |
3.1038 | 21500 | 0.0232 |
3.1760 | 22000 | 0.0239 |
3.2482 | 22500 | 0.0256 |
3.3203 | 23000 | 0.0248 |
3.3925 | 23500 | 0.0261 |
3.4647 | 24000 | 0.0244 |
3.5369 | 24500 | 0.0248 |
3.6091 | 25000 | 0.0231 |
3.6812 | 25500 | 0.0238 |
3.7534 | 26000 | 0.0242 |
3.8256 | 26500 | 0.0234 |
3.8978 | 27000 | 0.0249 |
3.9700 | 27500 | 0.0253 |
4.0422 | 28000 | 0.0218 |
4.1143 | 28500 | 0.0208 |
4.1865 | 29000 | 0.0201 |
4.2587 | 29500 | 0.0208 |
4.3309 | 30000 | 0.0205 |
4.4031 | 30500 | 0.0217 |
4.4752 | 31000 | 0.0193 |
4.5474 | 31500 | 0.0204 |
4.6196 | 32000 | 0.0202 |
4.6918 | 32500 | 0.0199 |
4.7640 | 33000 | 0.0205 |
4.8361 | 33500 | 0.0211 |
4.9083 | 34000 | 0.0213 |
4.9805 | 34500 | 0.02 |
Framework Versions
- Python: 3.9.20
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+rocm6.2
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for iddqd21/fine-tuned-e5-semantic-similarity_v2
Base model
intfloat/multilingual-e5-base