SentenceTransformer based on intfloat/multilingual-e5-base
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("iddqd21/fine-tuned-e5-semantic-similarity_lowercase")
# Run inference
sentences = [
'homo-gamma linolenate',
'alpha linolenate',
'complement factor b',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 109,998 training samples
- Columns:
sentence_0,sentence_1, andlabel - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 3 tokens
- mean: 10.8 tokens
- max: 33 tokens
- min: 3 tokens
- mean: 9.36 tokens
- max: 27 tokens
- min: 0.0
- mean: 0.44
- max: 1.0
- Samples:
sentence_0 sentence_1 label ้็ฏไบ้ ฎandrostenedione1.0follitropin^30dk gonadotropin salฤฑcฤฑ hormon dozufollitropin^30m post dose gonadotropin releasing hormone1.0ch50 serpl-mcnccomplement total hemolytic ch501.0 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 5multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 0.0727 | 500 | 0.1541 |
| 0.1455 | 1000 | 0.1012 |
| 0.2182 | 1500 | 0.0972 |
| 0.2909 | 2000 | 0.0862 |
| 0.3636 | 2500 | 0.0838 |
| 0.4364 | 3000 | 0.0818 |
| 0.5091 | 3500 | 0.0804 |
| 0.5818 | 4000 | 0.0746 |
| 0.6545 | 4500 | 0.0726 |
| 0.7273 | 5000 | 0.0693 |
| 0.8 | 5500 | 0.0688 |
| 0.8727 | 6000 | 0.0696 |
| 0.9455 | 6500 | 0.0661 |
| 1.0182 | 7000 | 0.0619 |
| 1.0909 | 7500 | 0.0537 |
| 1.1636 | 8000 | 0.0536 |
| 1.2364 | 8500 | 0.0537 |
| 1.3091 | 9000 | 0.0548 |
| 1.3818 | 9500 | 0.0526 |
| 1.4545 | 10000 | 0.0526 |
| 1.5273 | 10500 | 0.0489 |
| 1.6 | 11000 | 0.0501 |
| 1.6727 | 11500 | 0.0498 |
| 1.7455 | 12000 | 0.0487 |
| 1.8182 | 12500 | 0.0454 |
| 1.8909 | 13000 | 0.0454 |
| 1.9636 | 13500 | 0.0455 |
| 2.0364 | 14000 | 0.0426 |
| 2.1091 | 14500 | 0.0382 |
| 2.1818 | 15000 | 0.039 |
| 2.2545 | 15500 | 0.0368 |
| 2.3273 | 16000 | 0.0397 |
| 2.4 | 16500 | 0.0355 |
| 2.4727 | 17000 | 0.035 |
| 2.5455 | 17500 | 0.036 |
| 2.6182 | 18000 | 0.0348 |
| 2.6909 | 18500 | 0.0384 |
| 2.7636 | 19000 | 0.0338 |
| 2.8364 | 19500 | 0.0331 |
| 2.9091 | 20000 | 0.0345 |
| 2.9818 | 20500 | 0.0337 |
| 3.0545 | 21000 | 0.0293 |
| 3.1273 | 21500 | 0.0274 |
| 3.2 | 22000 | 0.0284 |
| 3.2727 | 22500 | 0.028 |
| 3.3455 | 23000 | 0.0275 |
| 3.4182 | 23500 | 0.03 |
| 3.4909 | 24000 | 0.027 |
| 3.5636 | 24500 | 0.0279 |
| 3.6364 | 25000 | 0.0285 |
| 3.7091 | 25500 | 0.0288 |
| 3.7818 | 26000 | 0.0263 |
| 3.8545 | 26500 | 0.0289 |
| 3.9273 | 27000 | 0.0271 |
| 4.0 | 27500 | 0.0268 |
| 4.0727 | 28000 | 0.0234 |
| 4.1455 | 28500 | 0.0228 |
| 4.2182 | 29000 | 0.0235 |
| 4.2909 | 29500 | 0.024 |
| 4.3636 | 30000 | 0.0234 |
| 4.4364 | 30500 | 0.0235 |
| 4.5091 | 31000 | 0.0233 |
| 4.5818 | 31500 | 0.0239 |
| 4.6545 | 32000 | 0.0228 |
| 4.7273 | 32500 | 0.0236 |
| 4.8 | 33000 | 0.0236 |
| 4.8727 | 33500 | 0.0223 |
| 4.9455 | 34000 | 0.022 |
Framework Versions
- Python: 3.9.20
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+rocm6.2
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 4
Model tree for iddqd21/fine-tuned-e5-semantic-similarity_lowercase
Base model
intfloat/multilingual-e5-base