qa_kor_market / README.md
idah4's picture
Update README.md
4ee61f6 verified
metadata
license: mit
base_model: hyunwoongko/kobart
tags:
  - generated_from_trainer
model-index:
  - name: qa_kor_market
    results: []

qa_kor_market

This model is a fine-tuned version of hyunwoongko/kobart on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7618

Model description

์Šˆํผ ๋งˆ์ผ“์—์„œ ์žˆ์„ ๋ฒ•ํ•œํ•œ ๋ฌธ์˜ ๋‚ด์šฉ์„ ์ž…๋ ฅํ•˜๋ฉด, ๋ฌธ์˜ ์˜๋„, ๋ฌธ์˜ ํ•ญ๋ชฉ, ๋‹ต๋ณ€์„ ๋ฆฌํ„ดํ•ด์ฃผ๋Š” ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 400
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
No log 0.03 100 3.4839
No log 0.05 200 1.4909
No log 0.08 300 1.2606
No log 0.1 400 1.1675
3.0259 0.13 500 1.1008
3.0259 0.15 600 1.0580
3.0259 0.18 700 1.0222
3.0259 0.2 800 0.9938
3.0259 0.23 900 0.9707
1.0853 0.25 1000 0.9571
1.0853 0.28 1100 0.9370
1.0853 0.3 1200 0.9293
1.0853 0.33 1300 0.9146
1.0853 0.35 1400 0.9065
0.992 0.38 1500 0.8997
0.992 0.41 1600 0.8930
0.992 0.43 1700 0.8834
0.992 0.46 1800 0.8788
0.992 0.48 1900 0.8714
0.9418 0.51 2000 0.8706
0.9418 0.53 2100 0.8676
0.9418 0.56 2200 0.8619
0.9418 0.58 2300 0.8548
0.9418 0.61 2400 0.8514
0.9222 0.63 2500 0.8511
0.9222 0.66 2600 0.8483
0.9222 0.68 2700 0.8425
0.9222 0.71 2800 0.8396
0.9222 0.74 2900 0.8384
0.8981 0.76 3000 0.8360
0.8981 0.79 3100 0.8295
0.8981 0.81 3200 0.8290
0.8981 0.84 3300 0.8273
0.8981 0.86 3400 0.8221
0.874 0.89 3500 0.8228
0.874 0.91 3600 0.8213
0.874 0.94 3700 0.8183
0.874 0.96 3800 0.8163
0.874 0.99 3900 0.8178
0.8575 1.01 4000 0.8143
0.8575 1.04 4100 0.8118
0.8575 1.06 4200 0.8094
0.8575 1.09 4300 0.8092
0.8575 1.12 4400 0.8085
0.8374 1.14 4500 0.8048
0.8374 1.17 4600 0.8041
0.8374 1.19 4700 0.8018
0.8374 1.22 4800 0.8007
0.8374 1.24 4900 0.7988
0.8282 1.27 5000 0.7980
0.8282 1.29 5100 0.7968
0.8282 1.32 5200 0.7974
0.8282 1.34 5300 0.7949
0.8282 1.37 5400 0.7919
0.8149 1.39 5500 0.7931
0.8149 1.42 5600 0.7900
0.8149 1.44 5700 0.7887
0.8149 1.47 5800 0.7875
0.8149 1.5 5900 0.7883
0.8098 1.52 6000 0.7886
0.8098 1.55 6100 0.7860
0.8098 1.57 6200 0.7873
0.8098 1.6 6300 0.7822
0.8098 1.62 6400 0.7841
0.8306 1.65 6500 0.7828
0.8306 1.67 6600 0.7817
0.8306 1.7 6700 0.7812
0.8306 1.72 6800 0.7814
0.8306 1.75 6900 0.7799
0.7974 1.77 7000 0.7774
0.7974 1.8 7100 0.7795
0.7974 1.83 7200 0.7782
0.7974 1.85 7300 0.7786
0.7974 1.88 7400 0.7773
0.7945 1.9 7500 0.7749
0.7945 1.93 7600 0.7737
0.7945 1.95 7700 0.7743
0.7945 1.98 7800 0.7742
0.7945 2.0 7900 0.7732
0.8005 2.03 8000 0.7758
0.8005 2.05 8100 0.7726
0.8005 2.08 8200 0.7716
0.8005 2.1 8300 0.7742
0.8005 2.13 8400 0.7720
0.7788 2.15 8500 0.7706
0.7788 2.18 8600 0.7701
0.7788 2.21 8700 0.7702
0.7788 2.23 8800 0.7676
0.7788 2.26 8900 0.7699
0.7685 2.28 9000 0.7689
0.7685 2.31 9100 0.7677
0.7685 2.33 9200 0.7686
0.7685 2.36 9300 0.7671
0.7685 2.38 9400 0.7668
0.7814 2.41 9500 0.7670
0.7814 2.43 9600 0.7669
0.7814 2.46 9700 0.7661
0.7814 2.48 9800 0.7653
0.7814 2.51 9900 0.7663
0.7824 2.53 10000 0.7655
0.7824 2.56 10100 0.7654
0.7824 2.59 10200 0.7653
0.7824 2.61 10300 0.7652
0.7824 2.64 10400 0.7640
0.7798 2.66 10500 0.7647
0.7798 2.69 10600 0.7637
0.7798 2.71 10700 0.7636
0.7798 2.74 10800 0.7629
0.7798 2.76 10900 0.7629
0.7619 2.79 11000 0.7629
0.7619 2.81 11100 0.7624
0.7619 2.84 11200 0.7621
0.7619 2.86 11300 0.7621
0.7619 2.89 11400 0.7623
0.7723 2.92 11500 0.7621
0.7723 2.94 11600 0.7619
0.7723 2.97 11700 0.7619
0.7723 2.99 11800 0.7618

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2