glot500_model_ar_nyuad
This model is a fine-tuned version of cis-lmu/glot500-base on the universal_dependencies dataset. It achieves the following results on the evaluation set:
- Loss: 2.1737
- Precision: 0.3662
- Recall: 0.0469
- F1: 0.0831
- Accuracy: 0.3091
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
2.2906 | 1.0 | 987 | 2.1919 | 0.3444 | 0.0440 | 0.0781 | 0.3086 |
2.1853 | 2.0 | 1974 | 2.1737 | 0.3662 | 0.0469 | 0.0831 | 0.3091 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 118
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for ibrahimbukhari1998/glot500_model_ar_nyuad
Base model
cis-lmu/glot500-baseDataset used to train ibrahimbukhari1998/glot500_model_ar_nyuad
Evaluation results
- Precision on universal_dependenciestest set self-reported0.366
- Recall on universal_dependenciestest set self-reported0.047
- F1 on universal_dependenciestest set self-reported0.083
- Accuracy on universal_dependenciestest set self-reported0.309