glot500_model_ar_nyuad

This model is a fine-tuned version of cis-lmu/glot500-base on the universal_dependencies dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1737
  • Precision: 0.3662
  • Recall: 0.0469
  • F1: 0.0831
  • Accuracy: 0.3091

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
2.2906 1.0 987 2.1919 0.3444 0.0440 0.0781 0.3086
2.1853 2.0 1974 2.1737 0.3662 0.0469 0.0831 0.3091

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
118
Safetensors
Model size
394M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for ibrahimbukhari1998/glot500_model_ar_nyuad

Finetuned
(8)
this model

Dataset used to train ibrahimbukhari1998/glot500_model_ar_nyuad

Evaluation results