whisper-SER-base-v2
This model is a fine-tuned version of openai/whisper-base on the facebook_voxpopulik_16k_Whisper_Compatible dataset. It achieves the following results on the evaluation set:
- Loss: 0.5113
- Wer: 31.9908
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 1
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 12000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.4753 | 0.4322 | 1000 | 0.4532 | 24.8077 |
0.4303 | 0.8643 | 2000 | 0.4212 | 25.1645 |
0.2697 | 1.2965 | 3000 | 0.4265 | 27.7174 |
0.2267 | 1.7286 | 4000 | 0.4122 | 27.1307 |
0.1764 | 2.1608 | 5000 | 0.4505 | 39.1422 |
0.2175 | 2.5929 | 6000 | 0.4206 | 26.8770 |
0.0845 | 3.0251 | 7000 | 0.4547 | 32.9739 |
0.0907 | 3.4572 | 8000 | 0.4707 | 28.8353 |
0.0968 | 3.8894 | 9000 | 0.4768 | 32.9660 |
0.0495 | 4.3215 | 10000 | 0.5026 | 31.2455 |
0.051 | 4.7537 | 11000 | 0.5037 | 32.8312 |
0.0668 | 5.1858 | 12000 | 0.5113 | 31.9908 |
Framework versions
- Transformers 4.48.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 22
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for iFaz/whisper-SER-base-v2
Base model
openai/whisper-base
Finetuned
this model
Dataset used to train iFaz/whisper-SER-base-v2
Evaluation results
- Wer on facebook_voxpopulik_16k_Whisper_Compatibleself-reported31.991