whisper-SER-base-v2

This model is a fine-tuned version of openai/whisper-base on the facebook_voxpopulik_16k_Whisper_Compatible dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5113
  • Wer: 31.9908

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 12000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4753 0.4322 1000 0.4532 24.8077
0.4303 0.8643 2000 0.4212 25.1645
0.2697 1.2965 3000 0.4265 27.7174
0.2267 1.7286 4000 0.4122 27.1307
0.1764 2.1608 5000 0.4505 39.1422
0.2175 2.5929 6000 0.4206 26.8770
0.0845 3.0251 7000 0.4547 32.9739
0.0907 3.4572 8000 0.4707 28.8353
0.0968 3.8894 9000 0.4768 32.9660
0.0495 4.3215 10000 0.5026 31.2455
0.051 4.7537 11000 0.5037 32.8312
0.0668 5.1858 12000 0.5113 31.9908

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
22
Safetensors
Model size
72.6M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for iFaz/whisper-SER-base-v2

Finetuned
this model

Dataset used to train iFaz/whisper-SER-base-v2

Evaluation results

  • Wer on facebook_voxpopulik_16k_Whisper_Compatible
    self-reported
    31.991