|
--- |
|
library_name: transformers |
|
language: |
|
- en |
|
license: apache-2.0 |
|
base_model: openai/whisper-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- iFaz/Whisper_Compatible_SER_benchmark |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: whisper-SER-base-v1 |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Whisper_Compatible_SER_benchmark(Not train_augmented) |
|
type: iFaz/Whisper_Compatible_SER_benchmark |
|
args: 'config: en, split: test' |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 105.45094152626362 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper-SER-base-v1 |
|
|
|
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Whisper_Compatible_SER_benchmark(Not train_augmented) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8757 |
|
- Wer: 105.4509 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 6000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-------:|:----:|:---------------:|:--------:| |
|
| 0.1761 | 2.4450 | 1000 | 0.5625 | 48.9594 | |
|
| 0.0796 | 4.8900 | 2000 | 0.5905 | 87.2151 | |
|
| 0.0201 | 7.3350 | 3000 | 0.7191 | 125.5203 | |
|
| 0.0054 | 9.7800 | 4000 | 0.7985 | 127.7998 | |
|
| 0.0012 | 12.2249 | 5000 | 0.8611 | 108.0278 | |
|
| 0.0008 | 14.6699 | 6000 | 0.8757 | 105.4509 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.48.0 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|