metadata
base_model: LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct
base_model_relation: finetune
license: other
license_name: exaone
license_link: LICENSE
language:
- en
- ko
tags:
- chat
- abliterated
- uncensored
- lg-ai
- exaone
- exaone-deep
pipeline_tag: text-generation
library_name: transformers
huihui-ai/DeepSeek-R1-0528-Qwen3-8B-abliterated
This is an uncensored version of deepseek-ai/DeepSeek-R1-0528-Qwen3-8B created with abliteration (see remove-refusals-with-transformers to know more about it). This is a crude, proof-of-concept implementation to remove refusals from an LLM model without using TransformerLens.
ollama
You can use huihui_ai/deepseek-r1-abliterated:8b directly,
Switch the thinking toggle using /set think
and /set nothink
ollama run huihui_ai/deepseek-r1-abliterated
Usage
You can use this model in your applications by loading it with Hugging Face's transformers
library:
You can try using /no_think to toggle think mode, but it’s not guaranteed to work every time.
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
model_name = "Huihui-EXAONE-Deep-2.4B-abliterated"
streaming = True # choose the streaming option
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Choose your prompt:
# Math example (AIME 2024)
prompt = r"""Let $x,y$ and $z$ be positive real numbers that satisfy the following system of equations:
\[\log_2\left({x \over yz}\right) = {1 \over 2}\]\[\log_2\left({y \over xz}\right) = {1 \over 3}\]\[\log_2\left({z \over xy}\right) = {1 \over 4}\]
Then the value of $\left|\log_2(x^4y^3z^2)\right|$ is $\tfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
Please reason step by step, and put your final answer within \boxed{}."""
# Korean MCQA example (CSAT Math 2025)
prompt = r"""Question : $a_1 = 2$인 수열 $\{a_n\}$과 $b_1 = 2$인 등차수열 $\{b_n\}$이 모든 자연수 $n$에 대하여\[\sum_{k=1}^{n} \frac{a_k}{b_{k+1}} = \frac{1}{2} n^2\]을 만족시킬 때, $\sum_{k=1}^{5} a_k$의 값을 구하여라.
Options :
A) 120
B) 125
C) 130
D) 135
E) 140
Please reason step by step, and you should write the correct option alphabet (A, B, C, D or E) within \\boxed{}."""
messages = [
{"role": "user", "content": prompt}
]
input_ids = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt"
)
if streaming:
streamer = TextIteratorStreamer(tokenizer)
thread = Thread(target=model.generate, kwargs=dict(
input_ids=input_ids.to("cuda"),
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=32768,
do_sample=True,
temperature=0.6,
top_p=0.95,
streamer=streamer
))
thread.start()
for text in streamer:
print(text, end="", flush=True)
else:
output = model.generate(
input_ids.to("cuda"),
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=32768,
do_sample=True,
temperature=0.6,
top_p=0.95,
)
print(tokenizer.decode(output[0]))
Donation
If you like it, please click 'like' and follow us for more updates.
You can follow x.com/support_huihui to get the latest model information from huihui.ai.
Your donation helps us continue our further development and improvement, a cup of coffee can do it.
- bitcoin(BTC):
bc1qqnkhuchxw0zqjh2ku3lu4hq45hc6gy84uk70ge