smol-1.7-tq
This model is a fine-tuned version of HuggingFaceTB/SmolLM2-1.7B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4523
- = Precision: 0.0
- = Recall: 0.0
- = F1-score: 0.0
- = Support: 31.0
- Precision: 0.0
- Recall: 0.0
- F1-score: 0.0
- Support: 113.0
- < Precision: 0.6985
- < Recall: 0.7925
- < F1-score: 0.7425
- < Support: 424.0
Precision: 0.6167
Recall: 0.7955
F1-score: 0.6948
Support: 269.0
- Accuracy: 0.6571
- Macro Avg Precision: 0.3288
- Macro Avg Recall: 0.3970
- Macro Avg F1-score: 0.3593
- Macro Avg Support: 837.0
- Weighted Avg Precision: 0.5521
- Weighted Avg Recall: 0.6571
- Weighted Avg F1-score: 0.5995
- Weighted Avg Support: 837.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 32
- total_train_batch_size: 512
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: reduce_lr_on_plateau
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | = Precision | = Recall | = F1-score | = Support | - Precision | - Recall | - F1-score | - Support | < Precision | < Recall | < F1-score | < Support | > Precision | > Recall | > F1-score | > Support | Accuracy | Macro Avg Precision | Macro Avg Recall | Macro Avg F1-score | Macro Avg Support | Weighted Avg Precision | Weighted Avg Recall | Weighted Avg F1-score | Weighted Avg Support |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3.6479 | 1.0 | 25 | 0.4992 | 0.0 | 0.0 | 0.0 | 31.0 | 0.0 | 0.0 | 0.0 | 113.0 | 0.5950 | 0.7830 | 0.6762 | 424.0 | 0.5471 | 0.5613 | 0.5541 | 269.0 | 0.5771 | 0.2855 | 0.3361 | 0.3076 | 837.0 | 0.4772 | 0.5771 | 0.5206 | 837.0 |
2.5144 | 2.0 | 50 | 0.4460 | 0.0 | 0.0 | 0.0 | 31.0 | 0.2222 | 0.0177 | 0.0328 | 113.0 | 0.6438 | 0.8184 | 0.7207 | 424.0 | 0.6228 | 0.6691 | 0.6452 | 269.0 | 0.6320 | 0.3722 | 0.3763 | 0.3497 | 837.0 | 0.5563 | 0.6320 | 0.5768 | 837.0 |
2.207 | 3.0 | 75 | 0.4411 | 0.0 | 0.0 | 0.0 | 31.0 | 0.0 | 0.0 | 0.0 | 113.0 | 0.6798 | 0.8160 | 0.7417 | 424.0 | 0.6288 | 0.7621 | 0.6891 | 269.0 | 0.6583 | 0.3271 | 0.3945 | 0.3577 | 837.0 | 0.5464 | 0.6583 | 0.5972 | 837.0 |
1.7458 | 4.0 | 100 | 0.4523 | 0.0 | 0.0 | 0.0 | 31.0 | 0.0 | 0.0 | 0.0 | 113.0 | 0.6985 | 0.7925 | 0.7425 | 424.0 | 0.6167 | 0.7955 | 0.6948 | 269.0 | 0.6571 | 0.3288 | 0.3970 | 0.3593 | 837.0 | 0.5521 | 0.6571 | 0.5995 | 837.0 |
1.6753 | 5.0 | 125 | 0.4816 | 0.0 | 0.0 | 0.0 | 31.0 | 0.0833 | 0.0177 | 0.0292 | 113.0 | 0.6744 | 0.8255 | 0.7423 | 424.0 | 0.6497 | 0.7100 | 0.6785 | 269.0 | 0.6487 | 0.3518 | 0.3883 | 0.3625 | 837.0 | 0.5617 | 0.6487 | 0.5980 | 837.0 |
1.244 | 6.0 | 150 | 0.5072 | 0.0 | 0.0 | 0.0 | 31.0 | 0.1412 | 0.1062 | 0.1212 | 113.0 | 0.6889 | 0.7783 | 0.7309 | 424.0 | 0.6554 | 0.6506 | 0.6530 | 269.0 | 0.6177 | 0.3714 | 0.3838 | 0.3763 | 837.0 | 0.5787 | 0.6177 | 0.5965 | 837.0 |
1.04 | 7.0 | 175 | 0.5208 | 0.0 | 0.0 | 0.0 | 31.0 | 0.1296 | 0.0619 | 0.0838 | 113.0 | 0.6803 | 0.7830 | 0.7281 | 424.0 | 0.6395 | 0.6989 | 0.6679 | 269.0 | 0.6296 | 0.3624 | 0.3860 | 0.3699 | 837.0 | 0.5676 | 0.6296 | 0.5948 | 837.0 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.0.1
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for hugosousa/smol-1.7-tq
Base model
HuggingFaceTB/SmolLM2-1.7B