NER-bert-base-multilingual-cased
This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on the hts98/UIT dataset. It achieves the following results on the evaluation set:
- Loss: 2.3492
- Precision: 0.6038
- Recall: 0.6459
- F1: 0.6241
- Accuracy: 0.7757
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 120.0
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 487 | 0.8134 | 0.4221 | 0.5292 | 0.4696 | 0.7412 |
1.0691 | 2.0 | 974 | 0.7439 | 0.4565 | 0.5744 | 0.5087 | 0.7600 |
0.6796 | 3.0 | 1461 | 0.8021 | 0.4755 | 0.5906 | 0.5268 | 0.7500 |
0.5266 | 4.0 | 1948 | 0.8266 | 0.4883 | 0.6171 | 0.5452 | 0.7569 |
0.4087 | 5.0 | 2435 | 0.8820 | 0.5043 | 0.6238 | 0.5577 | 0.7584 |
0.314 | 6.0 | 2922 | 0.8884 | 0.5110 | 0.6241 | 0.5619 | 0.7588 |
0.254 | 7.0 | 3409 | 0.9710 | 0.5112 | 0.6261 | 0.5628 | 0.7593 |
0.2096 | 8.0 | 3896 | 1.0743 | 0.5137 | 0.6272 | 0.5648 | 0.7622 |
0.1786 | 9.0 | 4383 | 1.1286 | 0.5182 | 0.6255 | 0.5668 | 0.7571 |
0.1486 | 10.0 | 4870 | 1.1630 | 0.5240 | 0.6306 | 0.5724 | 0.7545 |
0.132 | 11.0 | 5357 | 1.1934 | 0.5322 | 0.6278 | 0.5760 | 0.7606 |
0.1098 | 12.0 | 5844 | 1.1862 | 0.5380 | 0.6188 | 0.5756 | 0.7602 |
0.094 | 13.0 | 6331 | 1.3724 | 0.5295 | 0.6325 | 0.5764 | 0.7506 |
0.084 | 14.0 | 6818 | 1.3746 | 0.5304 | 0.6258 | 0.5742 | 0.7532 |
0.0758 | 15.0 | 7305 | 1.3000 | 0.5157 | 0.6333 | 0.5685 | 0.7581 |
0.0694 | 16.0 | 7792 | 1.4195 | 0.5486 | 0.6306 | 0.5867 | 0.7593 |
0.062 | 17.0 | 8279 | 1.4974 | 0.5234 | 0.6300 | 0.5718 | 0.7466 |
0.0543 | 18.0 | 8766 | 1.5014 | 0.5347 | 0.6199 | 0.5742 | 0.7568 |
0.0471 | 19.0 | 9253 | 1.5165 | 0.5373 | 0.6227 | 0.5769 | 0.7546 |
0.0449 | 20.0 | 9740 | 1.5719 | 0.5277 | 0.6278 | 0.5734 | 0.7568 |
0.0451 | 21.0 | 10227 | 1.5307 | 0.5582 | 0.6297 | 0.5918 | 0.7607 |
0.039 | 22.0 | 10714 | 1.5783 | 0.5437 | 0.6317 | 0.5844 | 0.7572 |
0.0363 | 23.0 | 11201 | 1.6342 | 0.5376 | 0.6303 | 0.5803 | 0.7542 |
0.0326 | 24.0 | 11688 | 1.6417 | 0.5590 | 0.6272 | 0.5911 | 0.7597 |
0.0296 | 25.0 | 12175 | 1.6685 | 0.5414 | 0.6389 | 0.5861 | 0.7587 |
0.0283 | 26.0 | 12662 | 1.7347 | 0.5571 | 0.6331 | 0.5927 | 0.7602 |
0.0277 | 27.0 | 13149 | 1.6560 | 0.5675 | 0.6423 | 0.6026 | 0.7632 |
0.025 | 28.0 | 13636 | 1.7497 | 0.5722 | 0.6361 | 0.6025 | 0.7614 |
0.0241 | 29.0 | 14123 | 1.7110 | 0.5652 | 0.6367 | 0.5988 | 0.7638 |
0.0242 | 30.0 | 14610 | 1.7947 | 0.5642 | 0.6297 | 0.5951 | 0.7647 |
0.0219 | 31.0 | 15097 | 1.8283 | 0.5607 | 0.6283 | 0.5926 | 0.7565 |
0.0193 | 32.0 | 15584 | 1.8161 | 0.5690 | 0.6278 | 0.5969 | 0.7648 |
0.0185 | 33.0 | 16071 | 1.8462 | 0.5564 | 0.6347 | 0.5930 | 0.7609 |
0.0195 | 34.0 | 16558 | 1.9018 | 0.5508 | 0.6280 | 0.5869 | 0.7558 |
0.0181 | 35.0 | 17045 | 1.8523 | 0.5638 | 0.6356 | 0.5975 | 0.7597 |
0.0182 | 36.0 | 17532 | 1.8344 | 0.5770 | 0.6328 | 0.6036 | 0.7611 |
0.0153 | 37.0 | 18019 | 1.8465 | 0.5760 | 0.6331 | 0.6032 | 0.7669 |
0.0142 | 38.0 | 18506 | 1.8911 | 0.5679 | 0.6238 | 0.5945 | 0.7632 |
0.0142 | 39.0 | 18993 | 1.8849 | 0.5790 | 0.6241 | 0.6007 | 0.7623 |
0.0151 | 40.0 | 19480 | 1.8399 | 0.5722 | 0.6255 | 0.5977 | 0.7665 |
0.0148 | 41.0 | 19967 | 1.8430 | 0.5782 | 0.6163 | 0.5966 | 0.7649 |
0.0138 | 42.0 | 20454 | 1.8764 | 0.5544 | 0.6278 | 0.5888 | 0.7691 |
0.0147 | 43.0 | 20941 | 1.9270 | 0.5717 | 0.6345 | 0.6015 | 0.7666 |
0.0148 | 44.0 | 21428 | 1.8888 | 0.5621 | 0.6227 | 0.5909 | 0.7711 |
0.0123 | 45.0 | 21915 | 1.8993 | 0.5552 | 0.6225 | 0.5869 | 0.7653 |
0.0115 | 46.0 | 22402 | 1.9475 | 0.5647 | 0.6353 | 0.5979 | 0.7645 |
0.0107 | 47.0 | 22889 | 1.9949 | 0.5778 | 0.6359 | 0.6054 | 0.7674 |
0.0098 | 48.0 | 23376 | 1.9607 | 0.5704 | 0.6275 | 0.5976 | 0.7681 |
0.012 | 49.0 | 23863 | 1.9185 | 0.5793 | 0.6518 | 0.6134 | 0.7676 |
0.0117 | 50.0 | 24350 | 1.9814 | 0.5729 | 0.6409 | 0.6050 | 0.7698 |
0.0093 | 51.0 | 24837 | 2.0354 | 0.5761 | 0.6409 | 0.6067 | 0.7662 |
0.0082 | 52.0 | 25324 | 1.9876 | 0.5937 | 0.6442 | 0.6179 | 0.7683 |
0.0077 | 53.0 | 25811 | 2.0616 | 0.6078 | 0.6345 | 0.6208 | 0.7691 |
0.0087 | 54.0 | 26298 | 1.9790 | 0.5634 | 0.6367 | 0.5978 | 0.7653 |
0.0102 | 55.0 | 26785 | 2.0688 | 0.5754 | 0.6392 | 0.6056 | 0.7678 |
0.0073 | 56.0 | 27272 | 1.9601 | 0.5863 | 0.6300 | 0.6073 | 0.7679 |
0.0087 | 57.0 | 27759 | 2.0415 | 0.5791 | 0.6412 | 0.6085 | 0.7683 |
0.0082 | 58.0 | 28246 | 2.0774 | 0.5687 | 0.6395 | 0.6020 | 0.7666 |
0.0056 | 59.0 | 28733 | 2.0773 | 0.5822 | 0.6322 | 0.6062 | 0.7637 |
0.0076 | 60.0 | 29220 | 2.1045 | 0.5968 | 0.6386 | 0.6170 | 0.7695 |
0.0071 | 61.0 | 29707 | 2.0994 | 0.5922 | 0.6278 | 0.6095 | 0.7682 |
0.0076 | 62.0 | 30194 | 2.0937 | 0.5795 | 0.6426 | 0.6094 | 0.7650 |
0.0082 | 63.0 | 30681 | 2.0307 | 0.5775 | 0.6381 | 0.6063 | 0.7683 |
0.0068 | 64.0 | 31168 | 2.1657 | 0.5820 | 0.6353 | 0.6075 | 0.7597 |
0.0065 | 65.0 | 31655 | 2.0142 | 0.5850 | 0.6448 | 0.6134 | 0.7692 |
0.0062 | 66.0 | 32142 | 2.1379 | 0.5777 | 0.6381 | 0.6064 | 0.7602 |
0.0059 | 67.0 | 32629 | 2.1319 | 0.5837 | 0.6426 | 0.6117 | 0.7631 |
0.0053 | 68.0 | 33116 | 2.1246 | 0.5761 | 0.6361 | 0.6046 | 0.7682 |
0.0049 | 69.0 | 33603 | 2.1514 | 0.5807 | 0.6381 | 0.6080 | 0.7657 |
0.0037 | 70.0 | 34090 | 2.1636 | 0.5839 | 0.6400 | 0.6107 | 0.7680 |
0.0053 | 71.0 | 34577 | 2.1478 | 0.5853 | 0.6266 | 0.6053 | 0.7639 |
0.0051 | 72.0 | 35064 | 2.1522 | 0.5779 | 0.6403 | 0.6075 | 0.7688 |
0.0047 | 73.0 | 35551 | 2.1609 | 0.5831 | 0.6381 | 0.6093 | 0.7671 |
0.0036 | 74.0 | 36038 | 2.1757 | 0.6001 | 0.6414 | 0.6201 | 0.7706 |
0.004 | 75.0 | 36525 | 2.2280 | 0.5909 | 0.6445 | 0.6165 | 0.7662 |
0.0036 | 76.0 | 37012 | 2.2199 | 0.6016 | 0.6375 | 0.6190 | 0.7710 |
0.0036 | 77.0 | 37499 | 2.1810 | 0.5852 | 0.6409 | 0.6118 | 0.7685 |
0.0043 | 78.0 | 37986 | 2.2161 | 0.5848 | 0.6364 | 0.6095 | 0.7689 |
0.0039 | 79.0 | 38473 | 2.1878 | 0.5748 | 0.6467 | 0.6087 | 0.7694 |
0.0052 | 80.0 | 38960 | 2.2712 | 0.5874 | 0.6308 | 0.6083 | 0.7653 |
0.0034 | 81.0 | 39447 | 2.2645 | 0.5893 | 0.6386 | 0.6130 | 0.7658 |
0.0027 | 82.0 | 39934 | 2.2353 | 0.5995 | 0.6336 | 0.6161 | 0.7651 |
0.0026 | 83.0 | 40421 | 2.3131 | 0.5851 | 0.6356 | 0.6093 | 0.7630 |
0.0017 | 84.0 | 40908 | 2.2798 | 0.5800 | 0.6437 | 0.6102 | 0.7660 |
0.0022 | 85.0 | 41395 | 2.3181 | 0.5879 | 0.6395 | 0.6126 | 0.7637 |
0.0032 | 86.0 | 41882 | 2.2964 | 0.5986 | 0.6364 | 0.6169 | 0.7696 |
0.003 | 87.0 | 42369 | 2.2509 | 0.5993 | 0.6420 | 0.6199 | 0.7665 |
0.003 | 88.0 | 42856 | 2.2512 | 0.6042 | 0.6386 | 0.6210 | 0.7705 |
0.0027 | 89.0 | 43343 | 2.2787 | 0.5812 | 0.6467 | 0.6122 | 0.7695 |
0.0016 | 90.0 | 43830 | 2.2573 | 0.5861 | 0.6426 | 0.6130 | 0.7653 |
0.0028 | 91.0 | 44317 | 2.2477 | 0.5963 | 0.6467 | 0.6205 | 0.7694 |
0.0022 | 92.0 | 44804 | 2.2446 | 0.5865 | 0.6493 | 0.6163 | 0.7652 |
0.0017 | 93.0 | 45291 | 2.2529 | 0.5917 | 0.6462 | 0.6177 | 0.7661 |
0.0017 | 94.0 | 45778 | 2.2624 | 0.5933 | 0.6400 | 0.6158 | 0.7650 |
0.0015 | 95.0 | 46265 | 2.2784 | 0.5969 | 0.6364 | 0.6160 | 0.7650 |
0.0012 | 96.0 | 46752 | 2.3038 | 0.5859 | 0.6456 | 0.6143 | 0.7629 |
0.0019 | 97.0 | 47239 | 2.3129 | 0.5861 | 0.6501 | 0.6164 | 0.7649 |
0.001 | 98.0 | 47726 | 2.3077 | 0.5912 | 0.6420 | 0.6155 | 0.7682 |
0.0009 | 99.0 | 48213 | 2.3493 | 0.5907 | 0.6440 | 0.6162 | 0.7633 |
0.0015 | 100.0 | 48700 | 2.3195 | 0.6003 | 0.6437 | 0.6212 | 0.7701 |
0.001 | 101.0 | 49187 | 2.3444 | 0.5956 | 0.6495 | 0.6214 | 0.7711 |
0.0008 | 102.0 | 49674 | 2.4047 | 0.5915 | 0.6417 | 0.6156 | 0.7639 |
0.0011 | 103.0 | 50161 | 2.3442 | 0.5796 | 0.6434 | 0.6098 | 0.7672 |
0.0009 | 104.0 | 50648 | 2.3378 | 0.5919 | 0.6423 | 0.6160 | 0.7682 |
0.0011 | 105.0 | 51135 | 2.3191 | 0.6018 | 0.6431 | 0.6218 | 0.7703 |
0.0007 | 106.0 | 51622 | 2.3766 | 0.5896 | 0.6451 | 0.6161 | 0.7683 |
0.0004 | 107.0 | 52109 | 2.3492 | 0.6038 | 0.6459 | 0.6241 | 0.7757 |
0.0008 | 108.0 | 52596 | 2.3653 | 0.5975 | 0.6462 | 0.6209 | 0.7681 |
0.0005 | 109.0 | 53083 | 2.3852 | 0.5992 | 0.6437 | 0.6206 | 0.7692 |
0.0005 | 110.0 | 53570 | 2.4063 | 0.6053 | 0.6406 | 0.6224 | 0.7685 |
0.0008 | 111.0 | 54057 | 2.4257 | 0.6007 | 0.6395 | 0.6195 | 0.7683 |
0.0009 | 112.0 | 54544 | 2.4032 | 0.5993 | 0.6437 | 0.6207 | 0.7700 |
0.0006 | 113.0 | 55031 | 2.3878 | 0.5967 | 0.6442 | 0.6196 | 0.7707 |
0.0003 | 114.0 | 55518 | 2.3939 | 0.6013 | 0.6423 | 0.6211 | 0.7713 |
0.0003 | 115.0 | 56005 | 2.4125 | 0.5980 | 0.6400 | 0.6183 | 0.7703 |
0.0003 | 116.0 | 56492 | 2.4203 | 0.5957 | 0.6456 | 0.6197 | 0.7706 |
0.0003 | 117.0 | 56979 | 2.4104 | 0.6 | 0.6426 | 0.6206 | 0.7707 |
0.0004 | 118.0 | 57466 | 2.4210 | 0.6004 | 0.6445 | 0.6217 | 0.7696 |
0.0004 | 119.0 | 57953 | 2.4213 | 0.5990 | 0.6428 | 0.6202 | 0.7692 |
0.0004 | 120.0 | 58440 | 2.4216 | 0.5993 | 0.6423 | 0.6200 | 0.7694 |
Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 3.1.0
- Tokenizers 0.13.3
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model's library.
Model tree for hts98/NER-bert-base-multilingual-cased
Base model
google-bert/bert-base-multilingual-casedDataset used to train hts98/NER-bert-base-multilingual-cased
Evaluation results
- Precision on hts98/UITself-reported0.604
- Recall on hts98/UITself-reported0.646
- F1 on hts98/UITself-reported0.624
- Accuracy on hts98/UITself-reported0.776