NER-bert-base-multilingual-cased

This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on the hts98/UIT dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3492
  • Precision: 0.6038
  • Recall: 0.6459
  • F1: 0.6241
  • Accuracy: 0.7757

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 120.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 487 0.8134 0.4221 0.5292 0.4696 0.7412
1.0691 2.0 974 0.7439 0.4565 0.5744 0.5087 0.7600
0.6796 3.0 1461 0.8021 0.4755 0.5906 0.5268 0.7500
0.5266 4.0 1948 0.8266 0.4883 0.6171 0.5452 0.7569
0.4087 5.0 2435 0.8820 0.5043 0.6238 0.5577 0.7584
0.314 6.0 2922 0.8884 0.5110 0.6241 0.5619 0.7588
0.254 7.0 3409 0.9710 0.5112 0.6261 0.5628 0.7593
0.2096 8.0 3896 1.0743 0.5137 0.6272 0.5648 0.7622
0.1786 9.0 4383 1.1286 0.5182 0.6255 0.5668 0.7571
0.1486 10.0 4870 1.1630 0.5240 0.6306 0.5724 0.7545
0.132 11.0 5357 1.1934 0.5322 0.6278 0.5760 0.7606
0.1098 12.0 5844 1.1862 0.5380 0.6188 0.5756 0.7602
0.094 13.0 6331 1.3724 0.5295 0.6325 0.5764 0.7506
0.084 14.0 6818 1.3746 0.5304 0.6258 0.5742 0.7532
0.0758 15.0 7305 1.3000 0.5157 0.6333 0.5685 0.7581
0.0694 16.0 7792 1.4195 0.5486 0.6306 0.5867 0.7593
0.062 17.0 8279 1.4974 0.5234 0.6300 0.5718 0.7466
0.0543 18.0 8766 1.5014 0.5347 0.6199 0.5742 0.7568
0.0471 19.0 9253 1.5165 0.5373 0.6227 0.5769 0.7546
0.0449 20.0 9740 1.5719 0.5277 0.6278 0.5734 0.7568
0.0451 21.0 10227 1.5307 0.5582 0.6297 0.5918 0.7607
0.039 22.0 10714 1.5783 0.5437 0.6317 0.5844 0.7572
0.0363 23.0 11201 1.6342 0.5376 0.6303 0.5803 0.7542
0.0326 24.0 11688 1.6417 0.5590 0.6272 0.5911 0.7597
0.0296 25.0 12175 1.6685 0.5414 0.6389 0.5861 0.7587
0.0283 26.0 12662 1.7347 0.5571 0.6331 0.5927 0.7602
0.0277 27.0 13149 1.6560 0.5675 0.6423 0.6026 0.7632
0.025 28.0 13636 1.7497 0.5722 0.6361 0.6025 0.7614
0.0241 29.0 14123 1.7110 0.5652 0.6367 0.5988 0.7638
0.0242 30.0 14610 1.7947 0.5642 0.6297 0.5951 0.7647
0.0219 31.0 15097 1.8283 0.5607 0.6283 0.5926 0.7565
0.0193 32.0 15584 1.8161 0.5690 0.6278 0.5969 0.7648
0.0185 33.0 16071 1.8462 0.5564 0.6347 0.5930 0.7609
0.0195 34.0 16558 1.9018 0.5508 0.6280 0.5869 0.7558
0.0181 35.0 17045 1.8523 0.5638 0.6356 0.5975 0.7597
0.0182 36.0 17532 1.8344 0.5770 0.6328 0.6036 0.7611
0.0153 37.0 18019 1.8465 0.5760 0.6331 0.6032 0.7669
0.0142 38.0 18506 1.8911 0.5679 0.6238 0.5945 0.7632
0.0142 39.0 18993 1.8849 0.5790 0.6241 0.6007 0.7623
0.0151 40.0 19480 1.8399 0.5722 0.6255 0.5977 0.7665
0.0148 41.0 19967 1.8430 0.5782 0.6163 0.5966 0.7649
0.0138 42.0 20454 1.8764 0.5544 0.6278 0.5888 0.7691
0.0147 43.0 20941 1.9270 0.5717 0.6345 0.6015 0.7666
0.0148 44.0 21428 1.8888 0.5621 0.6227 0.5909 0.7711
0.0123 45.0 21915 1.8993 0.5552 0.6225 0.5869 0.7653
0.0115 46.0 22402 1.9475 0.5647 0.6353 0.5979 0.7645
0.0107 47.0 22889 1.9949 0.5778 0.6359 0.6054 0.7674
0.0098 48.0 23376 1.9607 0.5704 0.6275 0.5976 0.7681
0.012 49.0 23863 1.9185 0.5793 0.6518 0.6134 0.7676
0.0117 50.0 24350 1.9814 0.5729 0.6409 0.6050 0.7698
0.0093 51.0 24837 2.0354 0.5761 0.6409 0.6067 0.7662
0.0082 52.0 25324 1.9876 0.5937 0.6442 0.6179 0.7683
0.0077 53.0 25811 2.0616 0.6078 0.6345 0.6208 0.7691
0.0087 54.0 26298 1.9790 0.5634 0.6367 0.5978 0.7653
0.0102 55.0 26785 2.0688 0.5754 0.6392 0.6056 0.7678
0.0073 56.0 27272 1.9601 0.5863 0.6300 0.6073 0.7679
0.0087 57.0 27759 2.0415 0.5791 0.6412 0.6085 0.7683
0.0082 58.0 28246 2.0774 0.5687 0.6395 0.6020 0.7666
0.0056 59.0 28733 2.0773 0.5822 0.6322 0.6062 0.7637
0.0076 60.0 29220 2.1045 0.5968 0.6386 0.6170 0.7695
0.0071 61.0 29707 2.0994 0.5922 0.6278 0.6095 0.7682
0.0076 62.0 30194 2.0937 0.5795 0.6426 0.6094 0.7650
0.0082 63.0 30681 2.0307 0.5775 0.6381 0.6063 0.7683
0.0068 64.0 31168 2.1657 0.5820 0.6353 0.6075 0.7597
0.0065 65.0 31655 2.0142 0.5850 0.6448 0.6134 0.7692
0.0062 66.0 32142 2.1379 0.5777 0.6381 0.6064 0.7602
0.0059 67.0 32629 2.1319 0.5837 0.6426 0.6117 0.7631
0.0053 68.0 33116 2.1246 0.5761 0.6361 0.6046 0.7682
0.0049 69.0 33603 2.1514 0.5807 0.6381 0.6080 0.7657
0.0037 70.0 34090 2.1636 0.5839 0.6400 0.6107 0.7680
0.0053 71.0 34577 2.1478 0.5853 0.6266 0.6053 0.7639
0.0051 72.0 35064 2.1522 0.5779 0.6403 0.6075 0.7688
0.0047 73.0 35551 2.1609 0.5831 0.6381 0.6093 0.7671
0.0036 74.0 36038 2.1757 0.6001 0.6414 0.6201 0.7706
0.004 75.0 36525 2.2280 0.5909 0.6445 0.6165 0.7662
0.0036 76.0 37012 2.2199 0.6016 0.6375 0.6190 0.7710
0.0036 77.0 37499 2.1810 0.5852 0.6409 0.6118 0.7685
0.0043 78.0 37986 2.2161 0.5848 0.6364 0.6095 0.7689
0.0039 79.0 38473 2.1878 0.5748 0.6467 0.6087 0.7694
0.0052 80.0 38960 2.2712 0.5874 0.6308 0.6083 0.7653
0.0034 81.0 39447 2.2645 0.5893 0.6386 0.6130 0.7658
0.0027 82.0 39934 2.2353 0.5995 0.6336 0.6161 0.7651
0.0026 83.0 40421 2.3131 0.5851 0.6356 0.6093 0.7630
0.0017 84.0 40908 2.2798 0.5800 0.6437 0.6102 0.7660
0.0022 85.0 41395 2.3181 0.5879 0.6395 0.6126 0.7637
0.0032 86.0 41882 2.2964 0.5986 0.6364 0.6169 0.7696
0.003 87.0 42369 2.2509 0.5993 0.6420 0.6199 0.7665
0.003 88.0 42856 2.2512 0.6042 0.6386 0.6210 0.7705
0.0027 89.0 43343 2.2787 0.5812 0.6467 0.6122 0.7695
0.0016 90.0 43830 2.2573 0.5861 0.6426 0.6130 0.7653
0.0028 91.0 44317 2.2477 0.5963 0.6467 0.6205 0.7694
0.0022 92.0 44804 2.2446 0.5865 0.6493 0.6163 0.7652
0.0017 93.0 45291 2.2529 0.5917 0.6462 0.6177 0.7661
0.0017 94.0 45778 2.2624 0.5933 0.6400 0.6158 0.7650
0.0015 95.0 46265 2.2784 0.5969 0.6364 0.6160 0.7650
0.0012 96.0 46752 2.3038 0.5859 0.6456 0.6143 0.7629
0.0019 97.0 47239 2.3129 0.5861 0.6501 0.6164 0.7649
0.001 98.0 47726 2.3077 0.5912 0.6420 0.6155 0.7682
0.0009 99.0 48213 2.3493 0.5907 0.6440 0.6162 0.7633
0.0015 100.0 48700 2.3195 0.6003 0.6437 0.6212 0.7701
0.001 101.0 49187 2.3444 0.5956 0.6495 0.6214 0.7711
0.0008 102.0 49674 2.4047 0.5915 0.6417 0.6156 0.7639
0.0011 103.0 50161 2.3442 0.5796 0.6434 0.6098 0.7672
0.0009 104.0 50648 2.3378 0.5919 0.6423 0.6160 0.7682
0.0011 105.0 51135 2.3191 0.6018 0.6431 0.6218 0.7703
0.0007 106.0 51622 2.3766 0.5896 0.6451 0.6161 0.7683
0.0004 107.0 52109 2.3492 0.6038 0.6459 0.6241 0.7757
0.0008 108.0 52596 2.3653 0.5975 0.6462 0.6209 0.7681
0.0005 109.0 53083 2.3852 0.5992 0.6437 0.6206 0.7692
0.0005 110.0 53570 2.4063 0.6053 0.6406 0.6224 0.7685
0.0008 111.0 54057 2.4257 0.6007 0.6395 0.6195 0.7683
0.0009 112.0 54544 2.4032 0.5993 0.6437 0.6207 0.7700
0.0006 113.0 55031 2.3878 0.5967 0.6442 0.6196 0.7707
0.0003 114.0 55518 2.3939 0.6013 0.6423 0.6211 0.7713
0.0003 115.0 56005 2.4125 0.5980 0.6400 0.6183 0.7703
0.0003 116.0 56492 2.4203 0.5957 0.6456 0.6197 0.7706
0.0003 117.0 56979 2.4104 0.6 0.6426 0.6206 0.7707
0.0004 118.0 57466 2.4210 0.6004 0.6445 0.6217 0.7696
0.0004 119.0 57953 2.4213 0.5990 0.6428 0.6202 0.7692
0.0004 120.0 58440 2.4216 0.5993 0.6423 0.6200 0.7694

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.13.3
Downloads last month
9
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.

Model tree for hts98/NER-bert-base-multilingual-cased

Finetuned
(633)
this model

Dataset used to train hts98/NER-bert-base-multilingual-cased

Evaluation results