Compcap_cooccur_0_90
This model is a fine-tuned version of llava-hf/llava-v1.6-mistral-7b-hf on the Compcap_cooccur_0_90 dataset. It achieves the following results on the evaluation set:
- Loss: 0.7879
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.9273 | 0.1505 | 50 | 0.9361 |
0.8938 | 0.3010 | 100 | 0.8805 |
0.8476 | 0.4515 | 150 | 0.8552 |
0.8413 | 0.6020 | 200 | 0.8378 |
0.8254 | 0.7524 | 250 | 0.8255 |
0.8091 | 0.9029 | 300 | 0.8149 |
0.7271 | 1.0534 | 350 | 0.8105 |
0.7383 | 1.2039 | 400 | 0.8056 |
0.7543 | 1.3544 | 450 | 0.8005 |
0.7373 | 1.5049 | 500 | 0.7961 |
0.7145 | 1.6554 | 550 | 0.7924 |
0.7176 | 1.8059 | 600 | 0.7887 |
0.7384 | 1.9564 | 650 | 0.7858 |
0.6877 | 2.1068 | 700 | 0.7907 |
0.6796 | 2.2573 | 750 | 0.7899 |
0.6837 | 2.4078 | 800 | 0.7888 |
0.6653 | 2.5583 | 850 | 0.7885 |
0.6563 | 2.7088 | 900 | 0.7879 |
0.6829 | 2.8593 | 950 | 0.7879 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.20.3
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for htlou/backup_0202_llamafactory_Compcap_cooccur_0_90-llava-mistral
Base model
llava-hf/llava-v1.6-mistral-7b-hf