hmrizal's picture
End of training
8aab615 verified
|
raw
history blame
2.61 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: emotion_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5625

emotion_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3486
  • Accuracy: 0.5625

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 18
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 40 2.0210 0.2437
No log 2.0 80 1.7511 0.3187
No log 3.0 120 1.6444 0.3688
No log 4.0 160 1.5294 0.4188
No log 5.0 200 1.4306 0.45
No log 6.0 240 1.3968 0.4813
No log 7.0 280 1.3403 0.5312
No log 8.0 320 1.3413 0.4688
No log 9.0 360 1.3573 0.4437
No log 10.0 400 1.4416 0.4562
No log 11.0 440 1.3263 0.5188
No log 12.0 480 1.3960 0.4813
1.1068 13.0 520 1.3476 0.5125
1.1068 14.0 560 1.3720 0.5125
1.1068 15.0 600 1.3614 0.4562

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.1.2
  • Datasets 2.19.1
  • Tokenizers 0.19.1