hkivancoral's picture
End of training
ce18c05
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_deit_base_adamax_0001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9066666666666666

smids_5x_deit_base_adamax_0001_fold3

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9417
  • Accuracy: 0.9067

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2147 1.0 375 0.4092 0.8317
0.1408 2.0 750 0.3269 0.915
0.0228 3.0 1125 0.4567 0.9067
0.0111 4.0 1500 0.5788 0.9033
0.0156 5.0 1875 0.6062 0.9
0.0288 6.0 2250 0.6656 0.8917
0.0007 7.0 2625 0.6456 0.9017
0.0002 8.0 3000 0.6407 0.8917
0.0002 9.0 3375 0.6824 0.9083
0.0084 10.0 3750 0.6593 0.905
0.0203 11.0 4125 0.7617 0.9017
0.0033 12.0 4500 0.7022 0.9167
0.0 13.0 4875 0.8023 0.9033
0.0 14.0 5250 0.8062 0.9083
0.0 15.0 5625 0.8735 0.905
0.0293 16.0 6000 0.8124 0.9133
0.0 17.0 6375 0.8110 0.915
0.0 18.0 6750 0.7934 0.9167
0.0 19.0 7125 0.8257 0.9117
0.0 20.0 7500 0.8169 0.905
0.0 21.0 7875 0.7971 0.9167
0.0 22.0 8250 0.8206 0.905
0.0031 23.0 8625 0.8887 0.9067
0.0 24.0 9000 0.8570 0.91
0.0 25.0 9375 0.9027 0.9017
0.0 26.0 9750 0.8809 0.9067
0.0 27.0 10125 0.8772 0.9083
0.0 28.0 10500 0.8815 0.9083
0.0 29.0 10875 0.8462 0.91
0.0028 30.0 11250 0.8854 0.9083
0.0 31.0 11625 0.8584 0.9083
0.0 32.0 12000 0.8933 0.905
0.0 33.0 12375 0.8718 0.9083
0.0 34.0 12750 0.8798 0.9067
0.0 35.0 13125 0.8653 0.9083
0.0 36.0 13500 0.8742 0.9133
0.0 37.0 13875 0.8914 0.9083
0.0 38.0 14250 0.8921 0.91
0.0 39.0 14625 0.9001 0.9083
0.0025 40.0 15000 0.9101 0.9083
0.0 41.0 15375 0.9161 0.9067
0.0 42.0 15750 0.9182 0.9083
0.0 43.0 16125 0.9246 0.905
0.0 44.0 16500 0.9291 0.9083
0.0 45.0 16875 0.9302 0.9067
0.0 46.0 17250 0.9341 0.9067
0.0 47.0 17625 0.9378 0.9067
0.0 48.0 18000 0.9402 0.9067
0.0 49.0 18375 0.9417 0.9067
0.0 50.0 18750 0.9417 0.9067

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2