hkivancoral's picture
End of training
7c4ca69
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_base_rms_00001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.885

smids_3x_deit_base_rms_00001_fold5

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9726
  • Accuracy: 0.885

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2653 1.0 225 0.2902 0.8817
0.1207 2.0 450 0.2612 0.9033
0.0968 3.0 675 0.3296 0.89
0.0298 4.0 900 0.4559 0.8883
0.0117 5.0 1125 0.4992 0.875
0.0194 6.0 1350 0.4918 0.8933
0.0374 7.0 1575 0.6989 0.8833
0.0219 8.0 1800 0.6248 0.8833
0.0334 9.0 2025 0.5552 0.89
0.0279 10.0 2250 0.6938 0.8767
0.0313 11.0 2475 0.7037 0.8933
0.0467 12.0 2700 0.7727 0.8817
0.0002 13.0 2925 0.7310 0.8883
0.0003 14.0 3150 0.7907 0.8883
0.0042 15.0 3375 0.6719 0.8917
0.0001 16.0 3600 0.7166 0.8883
0.0 17.0 3825 0.7878 0.8817
0.0001 18.0 4050 0.8205 0.885
0.0463 19.0 4275 0.7870 0.9017
0.0071 20.0 4500 0.8873 0.8867
0.0 21.0 4725 0.8762 0.89
0.0 22.0 4950 0.8528 0.89
0.0 23.0 5175 0.8386 0.8867
0.0046 24.0 5400 0.8618 0.8867
0.0 25.0 5625 0.8575 0.8883
0.0 26.0 5850 0.8716 0.8883
0.0 27.0 6075 0.9079 0.8833
0.0 28.0 6300 0.8533 0.895
0.0036 29.0 6525 0.9107 0.8883
0.0 30.0 6750 0.9085 0.8917
0.0 31.0 6975 0.9134 0.8883
0.0 32.0 7200 0.9080 0.8933
0.0034 33.0 7425 0.9660 0.8883
0.0 34.0 7650 0.9464 0.8883
0.0031 35.0 7875 0.9525 0.89
0.0 36.0 8100 0.9223 0.8917
0.0032 37.0 8325 0.9566 0.89
0.0 38.0 8550 0.9486 0.8933
0.0 39.0 8775 0.9542 0.8917
0.0 40.0 9000 0.9546 0.8883
0.0 41.0 9225 0.9671 0.8867
0.0 42.0 9450 0.9604 0.885
0.0026 43.0 9675 0.9661 0.8867
0.0 44.0 9900 0.9673 0.8883
0.0 45.0 10125 0.9685 0.8883
0.0 46.0 10350 0.9692 0.8867
0.0 47.0 10575 0.9716 0.8867
0.0 48.0 10800 0.9722 0.8867
0.0 49.0 11025 0.9726 0.8867
0.0 50.0 11250 0.9726 0.885

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2