hkivancoral's picture
End of training
026c3ee
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_base_rms_00001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9115191986644408

smids_3x_deit_base_rms_00001_fold1

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7561
  • Accuracy: 0.9115

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3187 1.0 226 0.2723 0.8898
0.146 2.0 452 0.2372 0.9115
0.0656 3.0 678 0.3870 0.8798
0.0534 4.0 904 0.4524 0.8881
0.0105 5.0 1130 0.4069 0.8982
0.0185 6.0 1356 0.4543 0.9032
0.0005 7.0 1582 0.5107 0.8982
0.004 8.0 1808 0.5982 0.8915
0.0085 9.0 2034 0.5226 0.9032
0.0004 10.0 2260 0.5577 0.8998
0.0002 11.0 2486 0.6123 0.8965
0.0001 12.0 2712 0.5861 0.9032
0.0037 13.0 2938 0.8045 0.8865
0.0067 14.0 3164 0.5419 0.9048
0.0003 15.0 3390 0.5952 0.9132
0.0 16.0 3616 0.5589 0.9048
0.003 17.0 3842 0.5765 0.9032
0.001 18.0 4068 0.6268 0.9032
0.0041 19.0 4294 0.6263 0.9098
0.0 20.0 4520 0.6013 0.9065
0.0134 21.0 4746 0.6132 0.9115
0.0041 22.0 4972 0.5973 0.9182
0.0031 23.0 5198 0.6373 0.9082
0.001 24.0 5424 0.6622 0.9149
0.0 25.0 5650 0.7262 0.8965
0.0 26.0 5876 0.7187 0.9082
0.0 27.0 6102 0.7175 0.9082
0.0 28.0 6328 0.6740 0.9082
0.0 29.0 6554 0.7038 0.9082
0.0 30.0 6780 0.7480 0.9015
0.0 31.0 7006 0.7529 0.8998
0.0 32.0 7232 0.7622 0.9048
0.0029 33.0 7458 0.7367 0.9048
0.0 34.0 7684 0.7218 0.9032
0.0 35.0 7910 0.7442 0.8982
0.0 36.0 8136 0.7444 0.9082
0.0 37.0 8362 0.7439 0.9082
0.0 38.0 8588 0.7353 0.9115
0.0 39.0 8814 0.7431 0.9048
0.0 40.0 9040 0.7357 0.9165
0.0027 41.0 9266 0.7445 0.9082
0.0025 42.0 9492 0.7447 0.9098
0.0 43.0 9718 0.7447 0.9065
0.0 44.0 9944 0.7513 0.9098
0.0 45.0 10170 0.7507 0.9132
0.0 46.0 10396 0.7520 0.9132
0.0 47.0 10622 0.7546 0.9115
0.0 48.0 10848 0.7555 0.9115
0.0 49.0 11074 0.7559 0.9115
0.0 50.0 11300 0.7561 0.9115

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2