hkivancoral's picture
End of training
7e0b133
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_deit_base_sgd_00001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5833333333333334

smids_10x_deit_base_sgd_00001_fold4

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0053
  • Accuracy: 0.5833

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1184 1.0 750 1.1087 0.3417
1.0954 2.0 1500 1.1049 0.3567
1.0943 3.0 2250 1.1012 0.3733
1.0965 4.0 3000 1.0976 0.3883
1.097 5.0 3750 1.0941 0.3983
1.0859 6.0 4500 1.0907 0.41
1.0772 7.0 5250 1.0874 0.4133
1.0913 8.0 6000 1.0841 0.43
1.0722 9.0 6750 1.0809 0.4383
1.0755 10.0 7500 1.0778 0.445
1.0725 11.0 8250 1.0746 0.4467
1.0546 12.0 9000 1.0716 0.4517
1.0625 13.0 9750 1.0686 0.46
1.0581 14.0 10500 1.0656 0.4683
1.047 15.0 11250 1.0626 0.4733
1.0434 16.0 12000 1.0597 0.48
1.0251 17.0 12750 1.0568 0.4917
1.0453 18.0 13500 1.0540 0.4933
1.0513 19.0 14250 1.0512 0.5
1.0388 20.0 15000 1.0484 0.51
1.0333 21.0 15750 1.0457 0.52
1.0252 22.0 16500 1.0431 0.5267
1.0295 23.0 17250 1.0405 0.5283
1.0271 24.0 18000 1.0379 0.5317
1.0317 25.0 18750 1.0355 0.5333
1.0277 26.0 19500 1.0331 0.5367
1.0061 27.0 20250 1.0308 0.5467
1.0064 28.0 21000 1.0286 0.555
1.0287 29.0 21750 1.0265 0.56
1.0101 30.0 22500 1.0245 0.5633
1.0026 31.0 23250 1.0225 0.5667
1.0037 32.0 24000 1.0207 0.5667
1.0192 33.0 24750 1.0189 0.57
1.0129 34.0 25500 1.0173 0.57
1.007 35.0 26250 1.0157 0.57
0.9958 36.0 27000 1.0143 0.5717
1.0225 37.0 27750 1.0130 0.5733
1.0064 38.0 28500 1.0118 0.575
0.99 39.0 29250 1.0107 0.5733
0.9987 40.0 30000 1.0097 0.5767
1.0146 41.0 30750 1.0088 0.5817
0.9734 42.0 31500 1.0080 0.5817
1.0086 43.0 32250 1.0073 0.5817
0.9898 44.0 33000 1.0068 0.5833
0.9877 45.0 33750 1.0063 0.5833
0.9974 46.0 34500 1.0059 0.5833
0.9888 47.0 35250 1.0057 0.5833
0.9987 48.0 36000 1.0055 0.5833
1.01 49.0 36750 1.0054 0.5833
0.9819 50.0 37500 1.0053 0.5833

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2