hkivancoral's picture
End of training
457857b
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_tiny_adamax_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4666666666666667

hushem_5x_deit_tiny_adamax_001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 5.5945
  • Accuracy: 0.4667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3843 1.0 27 1.6047 0.2667
1.3126 2.0 54 1.5540 0.2889
1.242 3.0 81 1.7659 0.2889
1.2292 4.0 108 1.5553 0.2667
1.1861 5.0 135 1.3959 0.2889
0.9837 6.0 162 1.3509 0.4889
0.9151 7.0 189 1.3189 0.3778
0.8428 8.0 216 1.2233 0.4444
0.6366 9.0 243 1.6296 0.5556
0.6056 10.0 270 2.1707 0.5333
0.6193 11.0 297 2.2637 0.5333
0.419 12.0 324 2.6815 0.4444
0.4931 13.0 351 1.6615 0.4444
0.4945 14.0 378 2.3385 0.4444
0.4035 15.0 405 2.2795 0.4889
0.2803 16.0 432 2.9683 0.5556
0.3104 17.0 459 3.6455 0.4222
0.2085 18.0 486 3.8509 0.5778
0.3092 19.0 513 2.7832 0.5333
0.2911 20.0 540 3.5970 0.4667
0.1508 21.0 567 2.8494 0.4
0.1872 22.0 594 3.4606 0.5111
0.1634 23.0 621 3.9940 0.5778
0.0282 24.0 648 4.2310 0.4667
0.0886 25.0 675 3.4801 0.4889
0.1057 26.0 702 3.6632 0.4222
0.0893 27.0 729 3.7806 0.5556
0.0108 28.0 756 4.5566 0.5556
0.1095 29.0 783 4.2488 0.5556
0.0164 30.0 810 4.4510 0.5556
0.0017 31.0 837 4.8182 0.5333
0.0006 32.0 864 5.4595 0.5333
0.0034 33.0 891 5.3273 0.5556
0.0036 34.0 918 4.8258 0.4889
0.0002 35.0 945 5.5297 0.5111
0.0007 36.0 972 5.4553 0.4667
0.0081 37.0 999 5.5834 0.5333
0.0001 38.0 1026 5.4059 0.5333
0.0001 39.0 1053 5.7543 0.4667
0.0 40.0 1080 5.5912 0.4667
0.0 41.0 1107 5.5774 0.4667
0.0 42.0 1134 5.5838 0.4667
0.0 43.0 1161 5.5882 0.4667
0.0 44.0 1188 5.5908 0.4667
0.0 45.0 1215 5.5928 0.4667
0.0 46.0 1242 5.5933 0.4667
0.0 47.0 1269 5.5942 0.4667
0.0 48.0 1296 5.5945 0.4667
0.0 49.0 1323 5.5945 0.4667
0.0 50.0 1350 5.5945 0.4667

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0