hkivancoral's picture
End of training
a967a14
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_tiny_adamax_001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4222222222222222

hushem_5x_deit_tiny_adamax_001_fold1

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 5.8123
  • Accuracy: 0.4222

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3956 1.0 27 1.9737 0.3111
0.888 2.0 54 1.5910 0.3556
1.1183 3.0 81 1.4091 0.3778
0.7709 4.0 108 1.4706 0.3778
0.9892 5.0 135 1.4916 0.4222
0.5847 6.0 162 2.0869 0.3778
0.6569 7.0 189 1.9470 0.3556
0.5263 8.0 216 1.6436 0.4
0.46 9.0 243 2.3342 0.3556
0.4825 10.0 270 1.8564 0.4222
0.3607 11.0 297 2.1004 0.4222
0.2444 12.0 324 2.4392 0.4222
0.3872 13.0 351 1.8032 0.4444
0.3209 14.0 378 2.9763 0.4
0.1884 15.0 405 2.8695 0.4667
0.1329 16.0 432 3.4787 0.4
0.2021 17.0 459 2.9858 0.4
0.1653 18.0 486 3.6825 0.4667
0.0813 19.0 513 3.2825 0.4444
0.1467 20.0 540 3.0809 0.4889
0.0538 21.0 567 3.9816 0.4222
0.1511 22.0 594 3.9404 0.4444
0.0505 23.0 621 4.4773 0.4667
0.0602 24.0 648 3.6484 0.4222
0.0403 25.0 675 4.0392 0.4444
0.005 26.0 702 3.8791 0.5556
0.0725 27.0 729 5.2091 0.4222
0.0084 28.0 756 4.7587 0.4222
0.0002 29.0 783 5.6091 0.3778
0.0001 30.0 810 5.5834 0.4222
0.0004 31.0 837 5.1075 0.4
0.0002 32.0 864 5.0938 0.4667
0.0014 33.0 891 5.4645 0.4667
0.0 34.0 918 5.9402 0.4222
0.0 35.0 945 5.8799 0.4222
0.0 36.0 972 5.8415 0.4222
0.0 37.0 999 5.8263 0.4222
0.0 38.0 1026 5.8129 0.4222
0.0 39.0 1053 5.8088 0.4222
0.0 40.0 1080 5.8085 0.4222
0.0 41.0 1107 5.8075 0.4222
0.0 42.0 1134 5.8084 0.4222
0.0 43.0 1161 5.8094 0.4222
0.0 44.0 1188 5.8109 0.4222
0.0 45.0 1215 5.8113 0.4222
0.0 46.0 1242 5.8120 0.4222
0.0 47.0 1269 5.8119 0.4222
0.0 48.0 1296 5.8123 0.4222
0.0 49.0 1323 5.8123 0.4222
0.0 50.0 1350 5.8123 0.4222

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0