hkivancoral's picture
End of training
bb01e27
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_tiny_adamax_00001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8292682926829268

hushem_5x_deit_tiny_adamax_00001_fold5

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0196
  • Accuracy: 0.8293

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3464 1.0 28 1.2206 0.4390
1.038 2.0 56 1.1163 0.4390
0.9036 3.0 84 1.0326 0.5122
0.7256 4.0 112 0.9850 0.4634
0.6091 5.0 140 0.9299 0.5366
0.5118 6.0 168 0.8096 0.6098
0.3976 7.0 196 0.8337 0.6341
0.2983 8.0 224 0.8361 0.6829
0.2464 9.0 252 0.7489 0.6829
0.1797 10.0 280 0.7126 0.7317
0.155 11.0 308 0.7190 0.7317
0.1087 12.0 336 0.7349 0.7561
0.0817 13.0 364 0.6756 0.7805
0.0808 14.0 392 0.7587 0.7561
0.0526 15.0 420 0.6534 0.7805
0.0415 16.0 448 0.7396 0.7805
0.0249 17.0 476 0.7772 0.8049
0.0224 18.0 504 0.7783 0.8049
0.016 19.0 532 0.8153 0.7805
0.0121 20.0 560 0.8052 0.8049
0.0082 21.0 588 0.8047 0.8049
0.0059 22.0 616 0.8544 0.8049
0.0042 23.0 644 0.9271 0.7805
0.0032 24.0 672 0.8999 0.8049
0.0029 25.0 700 0.9068 0.8293
0.0025 26.0 728 0.9094 0.8293
0.0022 27.0 756 0.9291 0.8293
0.0019 28.0 784 0.9347 0.8293
0.0016 29.0 812 0.9448 0.8293
0.0016 30.0 840 0.9586 0.8293
0.0015 31.0 868 0.9704 0.8293
0.0013 32.0 896 0.9735 0.8293
0.0013 33.0 924 0.9776 0.8293
0.0012 34.0 952 0.9829 0.8293
0.0011 35.0 980 0.9923 0.8293
0.0011 36.0 1008 0.9922 0.8293
0.001 37.0 1036 0.9983 0.8293
0.001 38.0 1064 1.0035 0.8293
0.0009 39.0 1092 0.9985 0.8293
0.0009 40.0 1120 1.0064 0.8293
0.0009 41.0 1148 1.0089 0.8293
0.0008 42.0 1176 1.0130 0.8293
0.0008 43.0 1204 1.0152 0.8293
0.0009 44.0 1232 1.0185 0.8293
0.0009 45.0 1260 1.0165 0.8293
0.0009 46.0 1288 1.0180 0.8293
0.0008 47.0 1316 1.0182 0.8293
0.0008 48.0 1344 1.0196 0.8293
0.0008 49.0 1372 1.0196 0.8293
0.0008 50.0 1400 1.0196 0.8293

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0