hkivancoral's picture
End of training
c4f9ad0
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_40x_deit_base_rms_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5777777777777777

hushem_40x_deit_base_rms_001_fold2

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 8.5594
  • Accuracy: 0.5778

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1732 1.0 215 1.0108 0.4667
0.7763 2.0 430 1.2138 0.5333
0.7021 3.0 645 1.2446 0.4
0.6002 4.0 860 1.7707 0.4444
0.4988 5.0 1075 2.1116 0.4667
0.4269 6.0 1290 2.3849 0.5556
0.3366 7.0 1505 2.4322 0.5556
0.2961 8.0 1720 3.2646 0.5556
0.2377 9.0 1935 3.1438 0.5333
0.2435 10.0 2150 3.6031 0.5778
0.2593 11.0 2365 3.5951 0.4889
0.1482 12.0 2580 3.8372 0.5111
0.1871 13.0 2795 3.7490 0.6222
0.1246 14.0 3010 3.7977 0.5333
0.166 15.0 3225 3.7321 0.5778
0.1672 16.0 3440 4.6413 0.4889
0.1752 17.0 3655 4.9330 0.5556
0.1214 18.0 3870 4.3615 0.5556
0.0488 19.0 4085 4.4231 0.5111
0.1336 20.0 4300 4.4451 0.5778
0.1002 21.0 4515 3.7455 0.5778
0.0734 22.0 4730 4.4970 0.5556
0.0322 23.0 4945 4.8990 0.5333
0.214 24.0 5160 5.1865 0.5778
0.1242 25.0 5375 5.0088 0.5333
0.0033 26.0 5590 4.9606 0.5556
0.0333 27.0 5805 4.4063 0.5778
0.0592 28.0 6020 4.1719 0.5556
0.0444 29.0 6235 6.2342 0.5111
0.0039 30.0 6450 5.9834 0.5333
0.003 31.0 6665 6.2329 0.5333
0.0008 32.0 6880 6.2499 0.6
0.1078 33.0 7095 5.2542 0.6222
0.0258 34.0 7310 6.7980 0.4889
0.0052 35.0 7525 6.6849 0.5333
0.0003 36.0 7740 6.1342 0.5556
0.0005 37.0 7955 5.4920 0.5778
0.0004 38.0 8170 5.3684 0.5778
0.0148 39.0 8385 5.3551 0.5556
0.0054 40.0 8600 7.4300 0.5111
0.0 41.0 8815 6.8539 0.5556
0.0 42.0 9030 6.8688 0.5556
0.0 43.0 9245 7.1702 0.5778
0.0 44.0 9460 7.4631 0.5778
0.0 45.0 9675 7.7338 0.5778
0.0 46.0 9890 7.9825 0.5778
0.0 47.0 10105 8.2172 0.5778
0.0 48.0 10320 8.4047 0.5778
0.0 49.0 10535 8.5267 0.5778
0.0 50.0 10750 8.5594 0.5778

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2