|
 |
|
|
|
# [latex2sympy2](https://github.com/OrangeX4/latex2sympy) |
|
|
|
## About |
|
|
|
`latex2sympy2` parses **LaTeX math expressions** and converts it into the equivalent **SymPy form**. The latex2sympy2 is adapted from [augustt198/latex2sympy](https://github.com/augustt198/latex2sympy) and [purdue-tlt / latex2sympy](https://github.com/purdue-tlt/latex2sympy). |
|
|
|
This project is a part of a VS Code extension called [Latex Sympy Calculator](https://marketplace.visualstudio.com/items?itemName=OrangeX4.latex-sympy-calculator). It is designed for providing people writing in latex or markdown a ability to calculate something when writing math expression. |
|
|
|
[ANTLR](http://www.antlr.org/) is used to generate the parser. |
|
|
|
## Features |
|
|
|
* **Arithmetic:** Add (+), Sub (-), Dot Mul (·), Cross Mul (×), Frac (/), Power (^), Abs (|x|), Sqrt (√), etc... |
|
* **Alphabet:** a - z, A - Z, α - ω, Subscript (x_1), Accent Bar(ā), etc... |
|
* **Common Functions:** gcd, lcm, floor, ceil, max, min, log, ln, exp, sin, cos, tan, csc, sec, cot, arcsin, sinh, arsinh, etc... |
|
* **Funcion Symbol:** f(x), f(x-1,), g(x,y), etc... |
|
* **Calculous:** Limit ($lim_{n\to\infty}$), Derivation ($\frac{d}{dx}(x^2+x)$), Integration ($\int xdx$), etc... |
|
* **Linear Algebra:** Matrix, Determinant, Transpose, Inverse, Elementary Transformation, etc... |
|
* **Other:** Binomial... |
|
|
|
**NOTICE:** It will do some irreversible calculations when converting determinants, transposed matrixes and elementary transformations... |
|
|
|
## Installation |
|
|
|
``` |
|
pip install latex2sympy2 |
|
``` |
|
|
|
**Requirements:** `sympy` and `antlr4-python3-runtime` packages. |
|
|
|
## Usage |
|
|
|
### Basic |
|
|
|
In Python: |
|
|
|
```python |
|
from latex2sympy2 import latex2sympy, latex2latex |
|
|
|
tex = r"\frac{d}{dx}(x^{2}+x)" |
|
# Or you can use '\mathrm{d}' to replace 'd' |
|
latex2sympy(tex) |
|
# => "Derivative(x**2 + x, x)" |
|
latex2latex(tex) |
|
# => "2 x + 1" |
|
``` |
|
|
|
### Examples |
|
|
|
|LaTeX|Converted SymPy|Calculated Latex| |
|
|-----|-----|---------------| |
|
|`x^{3}` $x^{3}$| `x**3`|`x^{3}` $x^{3}$| |
|
|`\frac{d}{dx} tx` $\frac{d}{dx}tx$|`Derivative(x*t, x)`|`t` $t$| |
|
|`\sum_{i = 1}^{n} i` $\sum_{i = 1}^{n} i$|`Sum(i, (i, 1, n))`|`\frac{n \left(n + 1\right)}{2}` $\frac{n \left(n + 1\right)}{2}$| |
|
|`\int_{a}^{b} \frac{dt}{t}`|`Integral(1/t, (t, a, b))`|`-\log{(a)} + \log{(b)}` $-\log{(a)} + \log{(b)}$| |
|
|`(2x^3 - x + z)|_{x=3}` $(2x^3 - x + z)\|_{x=3}$|`z + 51`| `z + 51` $z + 51$ | |
|
|
|
If you want to read the math formula, you can click [GitNotes](https://notes.orangex4.cool/?git=github&github=OrangeX4/latex2sympy). |
|
|
|
### Solve Equation |
|
|
|
``` latex |
|
# Before |
|
x + y = 1 |
|
|
|
# After |
|
[ y = 1 - x, \ x = 1 - y] |
|
``` |
|
|
|
### Eval At |
|
|
|
``` latex |
|
# Before |
|
(x+2)|_{x=y+1} |
|
|
|
# After |
|
y + 3 |
|
``` |
|
|
|
### Matrix |
|
|
|
#### Identity matrix |
|
|
|
``` |
|
tex = r"\bm{I}_3" |
|
latex2sympy(tex) |
|
# => "Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]])" |
|
``` |
|
|
|
#### Determinant |
|
|
|
``` python |
|
from latex2sympy2 import latex2sympy |
|
|
|
tex = r"\begin{vmatrix} x & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & x \end{vmatrix}" |
|
latex2sympy(tex) |
|
# => "x^{3}" |
|
``` |
|
|
|
#### Transpose |
|
|
|
``` python |
|
from latex2sympy2 import latex2sympy |
|
|
|
tex = r"\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}^T" |
|
# Or you can use "\begin{pmatrix}1&2&3\\4&5&6\\7&8&9\end{pmatrix}'" |
|
latex2sympy(tex) |
|
# => "Matrix([[1, 4, 7], [2, 5, 8], [3, 6, 9]])" |
|
``` |
|
|
|
#### Elementary Transformation |
|
|
|
``` python |
|
from latex2sympy2 import latex2sympy |
|
|
|
matrix = r''' |
|
\begin{pmatrix} |
|
1 & 2 & 3 \\ |
|
4 & 5 & 6 \\ |
|
7 & 8 & 9 \\ |
|
\end{pmatrix} |
|
''' |
|
|
|
# Scale the row with grammar "\xrightarrow{kr_n}" |
|
tex = matrix + r'\xrightarrow{3r_1}' |
|
latex2sympy(tex) |
|
# => "Matrix([[3, 6, 9], [4, 5, 6], [7, 8, 9]])" |
|
|
|
# Swap the cols with grammar "\xrightarrow{c_1<=>c_2}" |
|
# Of course, you can use "\leftrightarrow" to replace "<=>" |
|
tex = matrix + r'\xrightarrow{c_1<=>c_2}' |
|
latex2sympy(tex) |
|
# => "Matrix([[2, 1, 3], [5, 4, 6], [8, 7, 9]])" |
|
|
|
# Scale the second row and add it to the first row |
|
# with grammar "\xrightarrow{r_1+kr_2}" |
|
tex = matrix + r'\xrightarrow{r_1+kr_2}' |
|
latex2sympy(tex) |
|
# => "Matrix([[4*k + 1, 5*k + 2, 6*k + 3], [4, 5, 6], [7, 8, 9]])" |
|
|
|
# You can compose the transform with comma "," |
|
# and grammar "\xrightarrow[4r_3]{2r_1, 3r_2}" |
|
# Remember the priority of "{}" is higher than "[]" |
|
tex = matrix + r'\xrightarrow[4r_3]{2r_1, 3r_2}' |
|
latex2sympy(tex) |
|
# => "Matrix([[2, 4, 6], [12, 15, 18], [28, 32, 36]])" |
|
``` |
|
|
|
### Variances |
|
|
|
``` python |
|
from latex2sympy2 import latex2sympy, variances, var, set_variances |
|
|
|
# Assign x a value of 1 |
|
latex2sympy(r"x = 1") |
|
|
|
# Assign x a matrix symbol with dimension of n x m |
|
latex2sympy(r"x \in \mathbb{R}^{n \times m}") |
|
|
|
# Calculate x + y |
|
latex2sympy(r"x + y") |
|
# => "y + 1" |
|
|
|
# Get all variances |
|
print(variances) |
|
# => "{x: 1}" |
|
|
|
# Get variance of "x" |
|
print(var["x"]) |
|
# => "1" |
|
|
|
# Reset all variances |
|
set_variances({}) |
|
latex2sympy(r"x + y") |
|
# => "x + y" |
|
``` |
|
|
|
### Complex Number Support |
|
|
|
``` python |
|
from latex2sympy2 import set_real |
|
|
|
set_real(False) |
|
``` |
|
|
|
|
|
## Contributing |
|
|
|
If you want to add a new grammar, you can fork the code from [OrangeX4/latex2sympy](https://github.com/OrangeX4/latex2sympy). |
|
|
|
* To modify parser grammar, view the existing structure in `PS.g4`. |
|
* To modify the action associated with each grammar, look into `latex2sympy.py`. |
|
|
|
Contributors are welcome! Feel free to open a pull request or an issue. |
|
|