|
--- |
|
base_model: malmarjeh/t5-arabic-text-summarization |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: results |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# results |
|
|
|
This model is a fine-tuned version of [malmarjeh/t5-arabic-text-summarization](https://huggingface.co/malmarjeh/t5-arabic-text-summarization) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0104 |
|
- Rouge1: 0.1382 |
|
- Rouge2: 0.0187 |
|
- Rougel: 0.1382 |
|
- Rougelsum: 0.1382 |
|
- Gen Len: 18.9404 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 0.0338 | 0.23 | 500 | 0.0175 | 0.1514 | 0.0297 | 0.1511 | 0.1518 | 18.9188 | |
|
| 0.0566 | 0.46 | 1000 | 0.0161 | 0.1565 | 0.0388 | 0.157 | 0.1573 | 18.9188 | |
|
| 0.0418 | 0.7 | 1500 | 0.0125 | 0.1372 | 0.0199 | 0.1375 | 0.1379 | 18.8105 | |
|
| 0.0333 | 0.93 | 2000 | 0.0116 | 0.1443 | 0.0253 | 0.1448 | 0.1448 | 18.8051 | |
|
| 0.0287 | 1.16 | 2500 | 0.0110 | 0.144 | 0.0192 | 0.1442 | 0.1442 | 19.0 | |
|
| 0.0247 | 1.39 | 3000 | 0.0096 | 0.1511 | 0.024 | 0.1517 | 0.1518 | 19.0 | |
|
| 0.0219 | 1.62 | 3500 | 0.0087 | 0.1463 | 0.0241 | 0.1462 | 0.1462 | 18.9747 | |
|
| 0.021 | 1.86 | 4000 | 0.0104 | 0.1382 | 0.0187 | 0.1382 | 0.1382 | 18.9404 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.0.dev0 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|