|
--- |
|
base_model: maywell/Qwen2-7B-Multilingual-RP |
|
language: |
|
- en |
|
- ko |
|
- ja |
|
- zh |
|
- es |
|
license: apache-2.0 |
|
tags: |
|
- llama-cpp |
|
- gguf-my-repo |
|
--- |
|
|
|
# hellork/Qwen2-7B-Multilingual-RP-IQ4_NL-GGUF |
|
This model was converted to GGUF format from [`maywell/Qwen2-7B-Multilingual-RP`](https://huggingface.co/maywell/Qwen2-7B-Multilingual-RP) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. |
|
Refer to the [original model card](https://huggingface.co/maywell/Qwen2-7B-Multilingual-RP) for more details on the model. |
|
|
|
## Use with llama.cpp |
|
Install llama.cpp through brew (works on Mac and Linux) |
|
|
|
```bash |
|
brew install llama.cpp |
|
|
|
``` |
|
|
|
# Or compile it to take advantage of Nvidia CUDA hardware: |
|
|
|
```bash |
|
git clone https://github.com/ggerganov/llama.cpp.git |
|
cd llama* |
|
# look at docs for other hardware builds or to make sure none of this has changed. |
|
|
|
cmake -B build -DGGML_CUDA=ON |
|
CMAKE_ARGS="-DGGML_CUDA=on" cmake --build build --config Release # -j6 (optional: use a number less than the number of cores) |
|
|
|
# If your version of gcc is > 12 and it gives errors, use conda to install gcc-12 and activate it. |
|
# Run the above cmake commands again. |
|
# Then run conda deactivate and re-run the last line once more to link the build outside of conda. |
|
``` |
|
|
|
Invoke the llama.cpp server or the CLI. |
|
|
|
### CLI: |
|
```bash |
|
llama-cli --hf-repo hellork/Qwen2-7B-Multilingual-RP-IQ4_NL-GGUF --hf-file qwen2-7b-multilingual-rp-iq4_nl-imat.gguf -p "The meaning to life and the universe is" |
|
``` |
|
|
|
### Server: |
|
```bash |
|
llama-server --hf-repo hellork/Qwen2-7B-Multilingual-RP-IQ4_NL-GGUF --hf-file qwen2-7b-multilingual-rp-iq4_nl-imat.gguf -c 2048 |
|
``` |
|
|
|
### The Ship's Computer: |
|
|
|
Interact with this model by speaking to it. Lean, fast, & private, networked speech to text, AI images, multi-modal voice chat, control apps, webcam, and sound with less than 4GiB of VRAM. |
|
[whisper_dictation](https://github.com/themanyone/whisper_dictation) |
|
|
|
*Quick start* |
|
```bash |
|
git clone -b main --single-branch https://github.com/themanyone/whisper_dictation.git |
|
pip install -r whisper_dictation/requirements.txt |
|
|
|
git clone https://github.com/ggerganov/whisper.cpp |
|
cd whisper.cpp |
|
GGML_CUDA=1 make -j # assuming CUDA is available. see docs |
|
ln -s server ~/.local/bin/whisper_cpp_server # (just put it somewhere in $PATH) |
|
whisper_cpp_server -l en -m models/ggml-tiny.en.bin --port 7777 |
|
|
|
# -ngl option assumes CUDA or othr AI acceleration is available. see docs |
|
llama-server --hf-repo hellork/calme-2.1-qwen2-7b-IQ4_NL-GGUF --hf-file qwen2-7b-multilingual-rp-iq4_nl-imat.gguf -c 2048 -ngl 17 --port 8888 |
|
|
|
cd whisper_dictation |
|
./whisper_cpp_client.py |
|
``` |
|
|
|
### Install llama.cpp via git: |
|
|
|
Step 1: Clone llama.cpp from GitHub. |
|
``` |
|
git clone https://github.com/ggerganov/llama.cpp |
|
``` |
|
|
|
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). |
|
``` |
|
cd llama.cpp && LLAMA_CURL=1 make |
|
``` |
|
|
|
Step 3: Run inference through the main binary. |
|
``` |
|
./llama-cli --hf-repo hellork/Qwen2-7B-Multilingual-RP-IQ4_NL-GGUF --hf-file qwen2-7b-multilingual-rp-iq4_nl-imat.gguf -p "The meaning to life and the universe is" |
|
``` |
|
or |
|
``` |
|
./llama-server --hf-repo hellork/Qwen2-7B-Multilingual-RP-IQ4_NL-GGUF --hf-file qwen2-7b-multilingual-rp-iq4_nl-imat.gguf -c 2048 |
|
``` |
|
|