|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- emotone_ar |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: bert-base-arabic-finetuned-emotion |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: emotone_ar |
|
type: emotone_ar |
|
config: default |
|
split: train[:90%] |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7415506958250497 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7406006078114171 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-base-arabic-finetuned-emotion |
|
|
|
This model is a fine-tuned version of [asafaya/bert-base-arabic](https://huggingface.co/asafaya/bert-base-arabic) on the emotone_ar dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8965 |
|
- Accuracy: 0.7416 |
|
- F1: 0.7406 |
|
|
|
### Cite this model |
|
``` |
|
-Noaman, H. (2023). Improved Emotion Detection Framework for Arabic Text using Transformer Models. |
|
Advanced Engineering Technology and Application, 12(2), 1-11. |
|
|
|
@article{noaman2023improved, |
|
title={Improved Emotion Detection Framework for Arabic Text using Transformer Models}, |
|
author={Noaman, Hatem}, |
|
journal={Advanced Engineering Technology and Application}, |
|
volume={12}, |
|
number={2}, |
|
pages={1--11}, |
|
year={2023}, |
|
publisher={Fayoum University} |
|
} |
|
``` |
|
|
|
## Load Pretrained Model |
|
You can use this model by |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("hatemnoaman/bert-base-arabic-finetuned-emotion") |
|
model = AutoModel.from_pretrained("hatemnoaman/bert-base-arabic-finetuned-emotion") |
|
``` |
|
|
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 6 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| |
|
| 1.3476 | 1.0 | 142 | 0.8911 | 0.7008 | 0.6812 | |
|
| 0.8204 | 2.0 | 284 | 0.8175 | 0.7276 | 0.7212 | |
|
| 0.6227 | 3.0 | 426 | 0.8392 | 0.7376 | 0.7302 | |
|
| 0.4816 | 4.0 | 568 | 0.8531 | 0.7435 | 0.7404 | |
|
| 0.378 | 5.0 | 710 | 0.8817 | 0.7396 | 0.7388 | |
|
| 0.3134 | 6.0 | 852 | 0.8965 | 0.7416 | 0.7406 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.25.1 |
|
- Pytorch 1.13.0+cu116 |
|
- Datasets 2.8.0 |
|
- Tokenizers 0.13.2 |
|
|
|
|
|
|