librarian-bot's picture
Librarian Bot: Add base_model information to model
eaaf1ce
|
raw
history blame
2.17 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - emotone_ar
metrics:
  - accuracy
  - f1
base_model: asafaya/bert-base-arabic
model-index:
  - name: bert-base-arabic-finetuned-emotion
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: emotone_ar
          type: emotone_ar
          config: default
          split: train[:90%]
          args: default
        metrics:
          - type: accuracy
            value: 0.7415506958250497
            name: Accuracy
          - type: f1
            value: 0.7406006078114171
            name: F1

bert-base-arabic-finetuned-emotion

This model is a fine-tuned version of asafaya/bert-base-arabic on the emotone_ar dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8965
  • Accuracy: 0.7416
  • F1: 0.7406

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.3476 1.0 142 0.8911 0.7008 0.6812
0.8204 2.0 284 0.8175 0.7276 0.7212
0.6227 3.0 426 0.8392 0.7376 0.7302
0.4816 4.0 568 0.8531 0.7435 0.7404
0.378 5.0 710 0.8817 0.7396 0.7388
0.3134 6.0 852 0.8965 0.7416 0.7406

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2