|
--- |
|
library_name: transformers |
|
base_model: halcyon-llm/SmolLM2-360M-japanese_base_phase_1-11000 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- kajuma/training_01-09_token |
|
model-index: |
|
- name: scratch_adamw_phase_2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# scratch_adamw_phase_2 |
|
|
|
This model is a fine-tuned version of [halcyon-llm/SmolLM2-360M-japanese_base_phase_1-11000](https://huggingface.co/halcyon-llm/SmolLM2-360M-japanese_base_phase_1-11000) on the kajuma/training_01-09_token dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1349 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.003 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 64 |
|
- total_train_batch_size: 256 |
|
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine_with_min_lr |
|
- lr_scheduler_warmup_steps: 1000 |
|
- num_epochs: 1.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:-----:|:---------------:| |
|
| 1.1622 | 0.0438 | 500 | 1.1753 | |
|
| 1.2027 | 0.0877 | 1000 | 1.2353 | |
|
| 1.207 | 0.1315 | 1500 | 1.2419 | |
|
| 1.2536 | 0.1754 | 2000 | 1.2374 | |
|
| 1.2442 | 0.2192 | 2500 | 1.2315 | |
|
| 1.2163 | 0.2631 | 3000 | 1.2262 | |
|
| 1.1969 | 0.3069 | 3500 | 1.2185 | |
|
| 1.2102 | 0.3508 | 4000 | 1.2099 | |
|
| 1.1908 | 0.3946 | 4500 | 1.2016 | |
|
| 1.1611 | 0.4385 | 5000 | 1.1929 | |
|
| 1.2055 | 0.4823 | 5500 | 1.1835 | |
|
| 1.1743 | 0.5262 | 6000 | 1.1750 | |
|
| 1.1519 | 0.5700 | 6500 | 1.1674 | |
|
| 1.1397 | 0.6138 | 7000 | 1.1601 | |
|
| 1.1702 | 0.6577 | 7500 | 1.1538 | |
|
| 1.1633 | 0.7015 | 8000 | 1.1483 | |
|
| 1.1248 | 0.7454 | 8500 | 1.1439 | |
|
| 1.1306 | 0.7892 | 9000 | 1.1407 | |
|
| 1.0726 | 0.8331 | 9500 | 1.1385 | |
|
| 1.1104 | 0.8769 | 10000 | 1.1369 | |
|
| 1.0933 | 0.9208 | 10500 | 1.1359 | |
|
| 1.0918 | 0.9646 | 11000 | 1.1352 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.48.0.dev0 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|