|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: HuggingFaceTB/SmolLM2-360M |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- kajuma/training_01-09_patch |
|
model-index: |
|
- name: scratch_adamw_phase_1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# scratch_adamw_phase_1 |
|
|
|
This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-360M](https://huggingface.co/HuggingFaceTB/SmolLM2-360M) on the kajuma/training_01-09_patch dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1315 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.003 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 64 |
|
- total_train_batch_size: 256 |
|
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine_with_min_lr |
|
- lr_scheduler_warmup_steps: 1000 |
|
- training_steps: 11000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:-----:|:---------------:| |
|
| 1.4162 | 0.0439 | 500 | 1.4265 | |
|
| 1.3632 | 0.0878 | 1000 | 1.3825 | |
|
| 1.3563 | 0.1317 | 1500 | 1.3339 | |
|
| 1.2638 | 0.1755 | 2000 | 1.3033 | |
|
| 1.2974 | 0.2194 | 2500 | 1.2802 | |
|
| 1.3333 | 0.2633 | 3000 | 1.2623 | |
|
| 1.254 | 0.3072 | 3500 | 1.2466 | |
|
| 1.2591 | 0.3511 | 4000 | 1.2318 | |
|
| 1.2091 | 0.3950 | 4500 | 1.2186 | |
|
| 1.2803 | 0.4388 | 5000 | 1.2060 | |
|
| 1.222 | 0.4827 | 5500 | 1.1942 | |
|
| 1.2236 | 0.5266 | 6000 | 1.1826 | |
|
| 1.1148 | 0.5705 | 6500 | 1.1723 | |
|
| 1.2086 | 0.6144 | 7000 | 1.1626 | |
|
| 1.1524 | 0.6583 | 7500 | 1.1542 | |
|
| 1.1177 | 0.7022 | 8000 | 1.1471 | |
|
| 1.1894 | 0.7460 | 8500 | 1.1417 | |
|
| 1.1384 | 0.7899 | 9000 | 1.1379 | |
|
| 1.1379 | 0.8338 | 9500 | 1.1350 | |
|
| 1.1464 | 0.8777 | 10000 | 1.1333 | |
|
| 1.1579 | 0.9216 | 10500 | 1.1322 | |
|
| 1.144 | 0.9655 | 11000 | 1.1315 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.48.0.dev0 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|