DeepSeek-Prover-V2-7B LoRA (v1)
Rank-16 LoRA adapter fine-tuned from deepseek-ai/DeepSeek-Prover-V2-7B
on a conversational Lean theorem-proving corpus.
Model Details
Field | Value |
---|---|
Developed by | HAIELab |
Adapter type | LoRA (r = 16, α = 32, dropout = 0.05) |
Precision | bf16 · Flash-Attention v2 |
Context length | 1 792 tokens (left-padding) |
Hardware | 1 × H100 80 GB |
Intended Uses
Interactive Lean proof hints, conjecture generation, research on automated theorem proving.
Hyper-parameters
Parameter | Value |
---|---|
Epochs | 1 |
Max seq length | 1 792 |
Batch size | 16 train / 16 eval |
Grad accum | 1 |
LR schedule | Cosine, base 2 × 10⁻⁴, warm-up 3 % |
Weight decay | 0.01 |
Optimiser | AdamW |
LoRA | r 16 · α 32 · dropout 0.05 |
Precision | bf16 mixed, gradient-checkpointing |
Logging | every 50 steps |
Evaluation | once per epoch |
Results (1 epoch)
Metric | Value |
---|---|
Final train loss | 1.2297 |
Final eval loss | 1.2185 |
Mean token accuracy | 0.696 |
Tokens processed | 156 814 576 |
Train runtime | 10 h 17 m |
Train steps/s | 0.295 |
Quick Start
from transformers import AutoTokenizer, AutoModelForCausalLM
import peft, torch
# --- Hub repo IDs -----------------------------------------------------------
adapter_id = "haielab/DeepSeek-Prover-V2-7B-conjecture-base-FineTune-new-config"
base_id = "deepseek-ai/DeepSeek-Prover-V2-7B"
# --- 1️⃣ Tokenizer ----------------------------------------------------------
tok = AutoTokenizer.from_pretrained(base_id, trust_remote_code=True)
tok.padding_side, tok.pad_token = "left", tok.eos_token # DeepSeek expects left-padding
# --- 2️⃣ Load base model ----------------------------------------------------
base = AutoModelForCausalLM.from_pretrained(
base_id,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map="auto", # auto-place on available GPU(s)
)
# --- 3️⃣ Inject LoRA adapter ------------------------------------------------
model = peft.PeftModel.from_pretrained(base, adapter_id)
model.eval()
# --- 4️⃣ Generate proof continuation ---------------------------------------
prompt = "<user>Theorem foo …</user><assistant>"
inputs = tok(prompt, return_tensors="pt").to(model.device)
out = model.generate(
**inputs,
max_new_tokens=256,
temperature=0.7,
top_p=0.9,
)
print(tok.decode(out[0], skip_special_tokens=True))
Model tree for haielab/DeepSeek-Prover-V2-7B-conjecture-base-FineTune-new-config
Base model
deepseek-ai/DeepSeek-Prover-V2-7B