longsim-base / backups /data_preprocess.py
gzzyyxy's picture
Upload folder using huggingface_hub
c1a7f73 verified
# Not a contribution
# Changes made by NVIDIA CORPORATION & AFFILIATES enabling <CAT-K> or otherwise documented as
# NVIDIA-proprietary are not a contribution and subject to the following terms and conditions:
# SPDX-FileCopyrightText: Copyright (c) <year> NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
import signal
import multiprocessing
import os
import numpy as np
import pandas as pd
import tensorflow as tf
import torch
import pickle
import easydict
from functools import partial
from scipy.interpolate import interp1d
from argparse import ArgumentParser
from tqdm import tqdm
from typing import Any, Dict, List, Optional
from waymo_open_dataset.protos import scenario_pb2
MIN_VALID_STEPS = 15
_polygon_types = ['VEHICLE', 'BIKE', 'BUS', 'PEDESTRIAN']
_polygon_light_type = ['LANE_STATE_STOP', 'LANE_STATE_GO', 'LANE_STATE_CAUTION', 'LANE_STATE_UNKNOWN']
_point_types = ['DASH_SOLID_YELLOW', 'DASH_SOLID_WHITE', 'DASHED_WHITE', 'DASHED_YELLOW',
'DOUBLE_SOLID_YELLOW', 'DOUBLE_SOLID_WHITE', 'DOUBLE_DASH_YELLOW', 'DOUBLE_DASH_WHITE',
'SOLID_YELLOW', 'SOLID_WHITE', 'SOLID_DASH_WHITE', 'SOLID_DASH_YELLOW', 'EDGE',
'NONE', 'UNKNOWN', 'CROSSWALK', 'CENTERLINE']
_polygon_to_polygon_types = ['NONE', 'PRED', 'SUCC', 'LEFT', 'RIGHT']
Lane_type_hash = {
4: "BIKE",
3: "VEHICLE",
2: "VEHICLE",
1: "BUS"
}
boundary_type_hash = {
5: "UNKNOWN",
6: "DASHED_WHITE",
7: "SOLID_WHITE",
8: "DOUBLE_DASH_WHITE",
9: "DASHED_YELLOW",
10: "DOUBLE_DASH_YELLOW",
11: "SOLID_YELLOW",
12: "DOUBLE_SOLID_YELLOW",
13: "DASH_SOLID_YELLOW",
14: "UNKNOWN",
15: "EDGE",
16: "EDGE"
}
def safe_list_index(ls: List[Any], elem: Any) -> Optional[int]:
try:
return ls.index(elem)
except ValueError:
return None
# def get_agent_features(df: pd.DataFrame, av_id, num_historical_steps=11, dim=3, num_steps=91) -> Dict[str, Any]:
# if args.disable_invalid: # filter out agents that are unseen during the historical time steps
# historical_df = df[df['timestep'] == num_historical_steps-1] # extract the timestep==10 (current)
# agent_ids = list(historical_df['track_id'].unique()) # these agents are seen at timestep==10 (current)
# df = df[df['track_id'].isin(agent_ids)] # remove other agents
# else:
# agent_ids = list(df['track_id'].unique())
# num_agents = len(agent_ids)
# # initialization
# valid_mask = torch.zeros(num_agents, num_steps, dtype=torch.bool)
# current_valid_mask = torch.zeros(num_agents, dtype=torch.bool)
# predict_mask = torch.zeros(num_agents, num_steps, dtype=torch.bool)
# agent_id: List[Optional[str]] = [None] * num_agents
# agent_type = torch.zeros(num_agents, dtype=torch.uint8)
# agent_category = torch.zeros(num_agents, dtype=torch.uint8)
# position = torch.zeros(num_agents, num_steps, dim, dtype=torch.float)
# heading = torch.zeros(num_agents, num_steps, dtype=torch.float)
# velocity = torch.zeros(num_agents, num_steps, dim, dtype=torch.float)
# shape = torch.zeros(num_agents, num_steps, dim, dtype=torch.float)
# for track_id, track_df in df.groupby('track_id'):
# agent_idx = agent_ids.index(track_id)
# all_agent_steps = track_df['timestep'].values
# valid_agent_steps = all_agent_steps[track_df['validity'].astype(np.bool_)].astype(np.int32)
# valid_mask[agent_idx, valid_agent_steps] = True
# current_valid_mask[agent_idx] = valid_mask[agent_idx, num_historical_steps - 1] # current timestep 10
# if args.disable_invalid:
# predict_mask[agent_idx, valid_agent_steps] = True
# else:
# predict_mask[agent_idx] = True
# predict_mask[agent_idx, :num_historical_steps] = False
# if not current_valid_mask[agent_idx]:
# predict_mask[agent_idx, num_historical_steps:] = False
# # TODO: why using vector_repr?
# if vector_repr: # a time step t is valid only when both t and t-1 are valid
# valid_mask[agent_idx, 1 : num_historical_steps] = (
# valid_mask[agent_idx, : num_historical_steps - 1] &
# valid_mask[agent_idx, 1 : num_historical_steps])
# valid_mask[agent_idx, 0] = False
# agent_id[agent_idx] = track_id
# agent_type[agent_idx] = _agent_types.index(track_df['object_type'].values[0])
# agent_category[agent_idx] = track_df['object_category'].values[0]
# position[agent_idx, valid_agent_steps, :3] = torch.from_numpy(np.stack([track_df['position_x'].values[valid_agent_steps],
# track_df['position_y'].values[valid_agent_steps],
# track_df['position_z'].values[valid_agent_steps]],
# axis=-1)).float()
# heading[agent_idx, valid_agent_steps] = torch.from_numpy(track_df['heading'].values[valid_agent_steps]).float()
# velocity[agent_idx, valid_agent_steps, :2] = torch.from_numpy(np.stack([track_df['velocity_x'].values[valid_agent_steps],
# track_df['velocity_y'].values[valid_agent_steps]],
# axis=-1)).float()
# shape[agent_idx, valid_agent_steps, :3] = torch.from_numpy(np.stack([track_df['length'].values[valid_agent_steps],
# track_df['width'].values[valid_agent_steps],
# track_df["height"].values[valid_agent_steps]],
# axis=-1)).float()
# av_idx = agent_id.index(av_id)
# if split == 'test':
# predict_mask[current_valid_mask
# | (agent_category == 2)
# | (agent_category == 3), num_historical_steps:] = True
# return {
# 'num_nodes': num_agents,
# 'av_index': av_idx,
# 'valid_mask': valid_mask,
# 'predict_mask': predict_mask,
# 'id': agent_id,
# 'type': agent_type,
# 'category': agent_category,
# 'position': position,
# 'heading': heading,
# 'velocity': velocity,
# 'shape': shape
# }
def get_agent_features(track_infos: Dict[str, np.ndarray], av_id: int, num_historical_steps: int, num_steps: int) -> Dict[str, Any]:
agent_idx_to_add = []
for i in range(len(track_infos['object_id'])):
is_visible = track_infos['valid'][i, num_historical_steps - 1]
valid_steps = np.where(track_infos['valid'][i])[0]
valid_start, valid_end = valid_steps[0], valid_steps[-1]
is_valid = (valid_end - valid_start + 1) >= MIN_VALID_STEPS
if (is_visible or not args.disable_invalid) and is_valid:
agent_idx_to_add.append(i)
num_agents = len(agent_idx_to_add)
out_dict = {
'num_nodes': num_agents,
'valid_mask': torch.zeros(num_agents, num_steps, dtype=torch.bool),
'role': torch.zeros(num_agents, 3, dtype=torch.bool),
'id': torch.zeros(num_agents, dtype=torch.int64) - 1,
'type': torch.zeros(num_agents, dtype=torch.uint8),
'category': torch.zeros(num_agents, dtype=torch.uint8),
'position': torch.zeros(num_agents, num_steps, 3, dtype=torch.float),
'heading': torch.zeros(num_agents, num_steps, dtype=torch.float),
'velocity': torch.zeros(num_agents, num_steps, 2, dtype=torch.float),
'shape': torch.zeros(num_agents, num_steps, 3, dtype=torch.float),
}
for i, idx in enumerate(agent_idx_to_add):
out_dict['role'][i] = torch.from_numpy(track_infos['role'][idx])
out_dict['id'][i] = track_infos['object_id'][idx]
out_dict['type'][i] = track_infos['object_type'][idx]
out_dict['category'][i] = idx in track_infos['tracks_to_predict']
valid = track_infos["valid"][idx] # [n_step]
states = track_infos["states"][idx]
object_shape = states[:, 3:6] # [n_step, 3], length, width, height
object_shape = object_shape[valid].mean(axis=0) # [3]
out_dict["shape"][i] = torch.from_numpy(object_shape)
valid_steps = np.where(valid)[0]
position = states[:, :3] # [n_step, dim], x, y, z
velocity = states[:, 7:9] # [n_step, 2], vx, vy
heading = states[:, 6] # [n_step], heading
# valid.sum() should > 1:
t_start, t_end = valid_steps[0], valid_steps[-1]
f_pos = interp1d(valid_steps, position[valid], axis=0)
f_vel = interp1d(valid_steps, velocity[valid], axis=0)
f_yaw = interp1d(valid_steps, np.unwrap(heading[valid], axis=0), axis=0)
t_in = np.arange(t_start, t_end + 1)
out_dict["valid_mask"][i, t_start : t_end + 1] = True
out_dict["position"][i, t_start : t_end + 1] = torch.from_numpy(f_pos(t_in))
out_dict["velocity"][i, t_start : t_end + 1] = torch.from_numpy(f_vel(t_in))
out_dict["heading"][i, t_start : t_end + 1] = torch.from_numpy(f_yaw(t_in))
out_dict['av_idx'] = out_dict['id'].tolist().index(av_id)
return out_dict
def get_map_features(map_infos, tf_current_light, dim=3):
lane_segments = map_infos['lane']
all_polylines = map_infos["all_polylines"]
crosswalks = map_infos['crosswalk']
road_edges = map_infos['road_edge']
road_lines = map_infos['road_line']
lane_segment_ids = [info["id"] for info in lane_segments]
cross_walk_ids = [info["id"] for info in crosswalks]
road_edge_ids = [info["id"] for info in road_edges]
road_line_ids = [info["id"] for info in road_lines]
polygon_ids = lane_segment_ids + road_edge_ids + road_line_ids + cross_walk_ids
num_polygons = len(lane_segment_ids) + len(road_edge_ids) + len(road_line_ids) + len(cross_walk_ids)
# initialization
polygon_type = torch.zeros(num_polygons, dtype=torch.uint8)
polygon_light_type = torch.ones(num_polygons, dtype=torch.uint8) * 3
# list of (num_of_segments,), each element has shape of (num_of_points_of_current_segment - 1, dim)
point_position: List[Optional[torch.Tensor]] = [None] * num_polygons
point_orientation: List[Optional[torch.Tensor]] = [None] * num_polygons
point_magnitude: List[Optional[torch.Tensor]] = [None] * num_polygons
point_height: List[Optional[torch.Tensor]] = [None] * num_polygons
point_type: List[Optional[torch.Tensor]] = [None] * num_polygons
for lane_segment in lane_segments:
lane_segment = easydict.EasyDict(lane_segment)
lane_segment_idx = polygon_ids.index(lane_segment.id)
polyline_index = lane_segment.polyline_index # (start index of point in current scenario, end index of point in current scenario)
centerline = all_polylines[polyline_index[0] : polyline_index[1], :] # (num_of_points_of_current_segment, 5)
centerline = torch.from_numpy(centerline).float()
polygon_type[lane_segment_idx] = _polygon_types.index(Lane_type_hash[lane_segment.type])
res = tf_current_light[tf_current_light["lane_id"] == str(lane_segment.id)]
if len(res) != 0:
polygon_light_type[lane_segment_idx] = _polygon_light_type.index(res["state"].item())
point_position[lane_segment_idx] = torch.cat([centerline[:-1, :dim]], dim=0) # (num_of_points_of_current_segment - 1, 3)
center_vectors = centerline[1:] - centerline[:-1] # (num_of_points_of_current_segment - 1, 5)
point_orientation[lane_segment_idx] = torch.cat([torch.atan2(center_vectors[:, 1], center_vectors[:, 0])], dim=0) # (num_of_points_of_current_segment - 1,)
point_magnitude[lane_segment_idx] = torch.norm(torch.cat([center_vectors[:, :2]], dim=0), p=2, dim=-1) # (num_of_points_of_current_segment - 1,)
point_height[lane_segment_idx] = torch.cat([center_vectors[:, 2]], dim=0) # (num_of_points_of_current_segment - 1,)
center_type = _point_types.index('CENTERLINE')
point_type[lane_segment_idx] = torch.cat(
[torch.full((len(center_vectors),), center_type, dtype=torch.uint8)], dim=0)
for lane_segment in road_edges:
lane_segment = easydict.EasyDict(lane_segment)
lane_segment_idx = polygon_ids.index(lane_segment.id)
polyline_index = lane_segment.polyline_index
centerline = all_polylines[polyline_index[0] : polyline_index[1], :]
centerline = torch.from_numpy(centerline).float()
polygon_type[lane_segment_idx] = _polygon_types.index("VEHICLE")
point_position[lane_segment_idx] = torch.cat([centerline[:-1, :dim]], dim=0)
center_vectors = centerline[1:] - centerline[:-1]
point_orientation[lane_segment_idx] = torch.cat([torch.atan2(center_vectors[:, 1], center_vectors[:, 0])], dim=0)
point_magnitude[lane_segment_idx] = torch.norm(torch.cat([center_vectors[:, :2]], dim=0), p=2, dim=-1)
point_height[lane_segment_idx] = torch.cat([center_vectors[:, 2]], dim=0)
center_type = _point_types.index('EDGE')
point_type[lane_segment_idx] = torch.cat(
[torch.full((len(center_vectors),), center_type, dtype=torch.uint8)], dim=0)
for lane_segment in road_lines:
lane_segment = easydict.EasyDict(lane_segment)
lane_segment_idx = polygon_ids.index(lane_segment.id)
polyline_index = lane_segment.polyline_index
centerline = all_polylines[polyline_index[0] : polyline_index[1], :]
centerline = torch.from_numpy(centerline).float()
polygon_type[lane_segment_idx] = _polygon_types.index("VEHICLE")
point_position[lane_segment_idx] = torch.cat([centerline[:-1, :dim]], dim=0)
center_vectors = centerline[1:] - centerline[:-1]
point_orientation[lane_segment_idx] = torch.cat([torch.atan2(center_vectors[:, 1], center_vectors[:, 0])], dim=0)
point_magnitude[lane_segment_idx] = torch.norm(torch.cat([center_vectors[:, :2]], dim=0), p=2, dim=-1)
point_height[lane_segment_idx] = torch.cat([center_vectors[:, 2]], dim=0)
center_type = _point_types.index(boundary_type_hash[lane_segment.type])
point_type[lane_segment_idx] = torch.cat(
[torch.full((len(center_vectors),), center_type, dtype=torch.uint8)], dim=0)
for crosswalk in crosswalks:
crosswalk = easydict.EasyDict(crosswalk)
lane_segment_idx = polygon_ids.index(crosswalk.id)
polyline_index = crosswalk.polyline_index
centerline = all_polylines[polyline_index[0] : polyline_index[1], :]
centerline = torch.from_numpy(centerline).float()
polygon_type[lane_segment_idx] = _polygon_types.index("PEDESTRIAN")
point_position[lane_segment_idx] = torch.cat([centerline[:-1, :dim]], dim=0)
center_vectors = centerline[1:] - centerline[:-1]
point_orientation[lane_segment_idx] = torch.cat([torch.atan2(center_vectors[:, 1], center_vectors[:, 0])], dim=0)
point_magnitude[lane_segment_idx] = torch.norm(torch.cat([center_vectors[:, :2]], dim=0), p=2, dim=-1)
point_height[lane_segment_idx] = torch.cat([center_vectors[:, 2]], dim=0)
center_type = _point_types.index("CROSSWALK")
point_type[lane_segment_idx] = torch.cat(
[torch.full((len(center_vectors),), center_type, dtype=torch.uint8)], dim=0)
# (num_of_segments,), each element represents the number of points of the segment
num_points = torch.tensor([point.size(0) for point in point_position], dtype=torch.long)
# (2, total_num_of_points_of_all_segments), store the point index of segment and its corresponding segment index
# e.g. a scenario has 203 segments, and totally 14039 points:
# tensor([[ 0, 1, 2, ..., 14927, 14928, 14929],
# [ 0, 0, 0, ..., 202, 202, 202]]) => polygon_ids.index(lane_segment.id)
point_to_polygon_edge_index = torch.stack(
[torch.arange(num_points.sum(), dtype=torch.long),
torch.arange(num_polygons, dtype=torch.long).repeat_interleave(num_points)], dim=0)
# list of (num_of_lane_segments,)
polygon_to_polygon_edge_index = []
# list of (num_of_lane_segments,)
polygon_to_polygon_type = []
for lane_segment in lane_segments:
lane_segment = easydict.EasyDict(lane_segment)
lane_segment_idx = polygon_ids.index(lane_segment.id)
pred_inds = []
for pred in lane_segment.entry_lanes:
pred_idx = safe_list_index(polygon_ids, pred)
if pred_idx is not None:
pred_inds.append(pred_idx)
if len(pred_inds) != 0:
polygon_to_polygon_edge_index.append(
torch.stack([torch.tensor(pred_inds, dtype=torch.long),
torch.full((len(pred_inds),), lane_segment_idx, dtype=torch.long)], dim=0))
polygon_to_polygon_type.append(
torch.full((len(pred_inds),), _polygon_to_polygon_types.index('PRED'), dtype=torch.uint8))
succ_inds = []
for succ in lane_segment.exit_lanes:
succ_idx = safe_list_index(polygon_ids, succ)
if succ_idx is not None:
succ_inds.append(succ_idx)
if len(succ_inds) != 0:
polygon_to_polygon_edge_index.append(
torch.stack([torch.tensor(succ_inds, dtype=torch.long),
torch.full((len(succ_inds),), lane_segment_idx, dtype=torch.long)], dim=0))
polygon_to_polygon_type.append(
torch.full((len(succ_inds),), _polygon_to_polygon_types.index('SUCC'), dtype=torch.uint8))
if len(lane_segment.left_neighbors) != 0:
left_neighbor_ids = lane_segment.left_neighbors
for left_neighbor_id in left_neighbor_ids:
left_idx = safe_list_index(polygon_ids, left_neighbor_id)
if left_idx is not None:
polygon_to_polygon_edge_index.append(
torch.tensor([[left_idx], [lane_segment_idx]], dtype=torch.long))
polygon_to_polygon_type.append(
torch.tensor([_polygon_to_polygon_types.index('LEFT')], dtype=torch.uint8))
if len(lane_segment.right_neighbors) != 0:
right_neighbor_ids = lane_segment.right_neighbors
for right_neighbor_id in right_neighbor_ids:
right_idx = safe_list_index(polygon_ids, right_neighbor_id)
if right_idx is not None:
polygon_to_polygon_edge_index.append(
torch.tensor([[right_idx], [lane_segment_idx]], dtype=torch.long))
polygon_to_polygon_type.append(
torch.tensor([_polygon_to_polygon_types.index('RIGHT')], dtype=torch.uint8))
if len(polygon_to_polygon_edge_index) != 0:
polygon_to_polygon_edge_index = torch.cat(polygon_to_polygon_edge_index, dim=1)
polygon_to_polygon_type = torch.cat(polygon_to_polygon_type, dim=0)
else:
polygon_to_polygon_edge_index = torch.tensor([[], []], dtype=torch.long)
polygon_to_polygon_type = torch.tensor([], dtype=torch.uint8)
map_data = {
'map_polygon': {},
'map_point': {},
('map_point', 'to', 'map_polygon'): {},
('map_polygon', 'to', 'map_polygon'): {},
}
map_data['map_polygon']['num_nodes'] = num_polygons # int, number of map segments in the scenario
map_data['map_polygon']['type'] = polygon_type # (num_polygons,) type of each polygon
map_data['map_polygon']['light_type'] = polygon_light_type # (num_polygons,) light type of each polygon, 3 means unknown
if len(num_points) == 0:
map_data['map_point']['num_nodes'] = 0
map_data['map_point']['position'] = torch.tensor([], dtype=torch.float)
map_data['map_point']['orientation'] = torch.tensor([], dtype=torch.float)
map_data['map_point']['magnitude'] = torch.tensor([], dtype=torch.float)
if dim == 3:
map_data['map_point']['height'] = torch.tensor([], dtype=torch.float)
map_data['map_point']['type'] = torch.tensor([], dtype=torch.uint8)
map_data['map_point']['side'] = torch.tensor([], dtype=torch.uint8)
else:
map_data['map_point']['num_nodes'] = num_points.sum().item() # int, number of total points of all segments in the scenario
map_data['map_point']['position'] = torch.cat(point_position, dim=0) # (num_of_total_points_of_all_segments, 3)
map_data['map_point']['orientation'] = torch.cat(point_orientation, dim=0) # (num_of_total_points_of_all_segments,)
map_data['map_point']['magnitude'] = torch.cat(point_magnitude, dim=0) # (num_of_total_points_of_all_segments,)
if dim == 3:
map_data['map_point']['height'] = torch.cat(point_height, dim=0) # (num_of_total_points_of_all_segments,)
map_data['map_point']['type'] = torch.cat(point_type, dim=0) # (num_of_total_points_of_all_segments,) type of point => `_point_types`
map_data['map_point', 'to', 'map_polygon']['edge_index'] = point_to_polygon_edge_index # (2, num_of_total_points_of_all_segments)
map_data['map_polygon', 'to', 'map_polygon']['edge_index'] = polygon_to_polygon_edge_index
map_data['map_polygon', 'to', 'map_polygon']['type'] = polygon_to_polygon_type
if int(os.getenv('DEBUG_MAP', 1)):
import matplotlib.pyplot as plt
plt.axis('equal')
plt.scatter(map_data['map_point']['position'][:, 0],
map_data['map_point']['position'][:, 1], s=0.2, c='black', edgecolors='none')
plt.savefig("debug.png", dpi=600)
return map_data
# def process_agent(track_info, tracks_to_predict, scenario_id, start_timestamp, end_timestamp):
# agents_array = track_info["states"].transpose(1, 0, 2) # (num_timesteps, num_agents, 10) e.g. (91, 15, 10)
# object_id = np.array(track_info["object_id"]) # (num_agents,) global id of each agent
# object_type = track_info["object_type"] # (num_agents,) type of each agent, e.g. 'TYPE_VEHICLE'
# id_hash = {object_id[o_idx]: object_type[o_idx] for o_idx in range(len(object_id))}
# def type_hash(x):
# tp = id_hash[x]
# type_re_hash = {
# "TYPE_VEHICLE": "vehicle",
# "TYPE_PEDESTRIAN": "pedestrian",
# "TYPE_CYCLIST": "cyclist",
# "TYPE_OTHER": "background",
# "TYPE_UNSET": "background"
# }
# return type_re_hash[tp]
# columns = ['observed', 'track_id', 'object_type', 'object_category', 'timestep',
# 'position_x', 'position_y', 'position_z', 'length', 'width', 'height', 'heading', 'velocity_x', 'velocity_y',
# 'scenario_id', 'start_timestamp', 'end_timestamp', 'num_timestamps',
# 'focal_track_id', 'city', 'validity']
# # (num_timesteps, num_agents, 10) e.g. (91, 15, 10)
# new_columns = np.ones((agents_array.shape[0], agents_array.shape[1], 11))
# new_columns[:11, :, 0] = True # observed, 10 timesteps
# new_columns[11:, :, 0] = False # not observed (current + future)
# for index in range(new_columns.shape[0]):
# new_columns[index, :, 4] = int(index) # timestep (0 ~ 90)
# new_columns[..., 1] = object_id
# new_columns[..., 2] = object_id
# new_columns[:, tracks_to_predict['track_index'], 3] = 3
# new_columns[..., 5] = 11
# new_columns[..., 6] = int(start_timestamp) # 0
# new_columns[..., 7] = int(end_timestamp) # 91
# new_columns[..., 8] = int(91) # 91
# new_columns[..., 9] = object_id
# new_columns[..., 10] = 10086
# new_columns = new_columns
# new_agents_array = np.concatenate([new_columns, agents_array], axis=-1) # (num_timesteps, num_agents, 21) e.g. (91, 15, 21)
# # filter out the invalid timestep of agents, reshape to (num_valid_of_timesteps_of_all_agents, 21) e.g. (91, 15, 21) -> (1137, 21)
# if args.disable_invalid:
# new_agents_array = new_agents_array[new_agents_array[..., -1] == 1.0].reshape(-1, new_agents_array.shape[-1])
# else:
# agent_valid_mask = new_agents_array[..., -1] # (num_timesteps, num_agents)
# agent_mask = np.sum(agent_valid_mask, axis=0) > MIN_VALID_STEPS # NOTE: 10 is a empirical parameter
# new_agents_array = new_agents_array[:, agent_mask]
# new_agents_array = new_agents_array.reshape(-1, new_agents_array.shape[-1]) # (91, 15, 21) -> (1365, 21)
# new_agents_array = new_agents_array[..., [0, 1, 2, 3, 4, 11, 12, 13, 14, 15, 16, 17, 18, 19, 5, 6, 7, 8, 9, 10, 20]]
# new_agents_array = pd.DataFrame(data=new_agents_array, columns=columns)
# new_agents_array["object_type"] = new_agents_array["object_type"].apply(func=type_hash)
# new_agents_array["start_timestamp"] = new_agents_array["start_timestamp"].astype(int)
# new_agents_array["end_timestamp"] = new_agents_array["end_timestamp"].astype(int)
# new_agents_array["num_timestamps"] = new_agents_array["num_timestamps"].astype(int)
# new_agents_array["scenario_id"] = scenario_id
# return new_agents_array
def process_dynamic_map(dynamic_map_infos):
lane_ids = dynamic_map_infos["lane_id"]
tf_lights = []
for t in range(len(lane_ids)):
lane_id = lane_ids[t]
time = np.ones_like(lane_id) * t
state = dynamic_map_infos["state"][t]
tf_light = np.concatenate([lane_id, time, state], axis=0)
tf_lights.append(tf_light)
tf_lights = np.concatenate(tf_lights, axis=1).transpose(1, 0)
tf_lights = pd.DataFrame(data=tf_lights, columns=["lane_id", "time_step", "state"])
tf_lights["time_step"] = tf_lights["time_step"].astype("str")
tf_lights["lane_id"] = tf_lights["lane_id"].astype("str")
tf_lights["state"] = tf_lights["state"].astype("str")
tf_lights.loc[tf_lights["state"].str.contains("STOP"), ["state"]] = (
"LANE_STATE_STOP"
)
tf_lights.loc[tf_lights["state"].str.contains("GO"), ["state"]] = "LANE_STATE_GO"
tf_lights.loc[tf_lights["state"].str.contains("CAUTION"), ["state"]] = (
"LANE_STATE_CAUTION"
)
tf_lights.loc[tf_lights["state"].str.contains("UNKNOWN"), ["state"]] = (
"LANE_STATE_UNKNOWN"
)
return tf_lights
polyline_type = {
# for lane
'TYPE_UNDEFINED': -1,
'TYPE_FREEWAY': 1,
'TYPE_SURFACE_STREET': 2,
'TYPE_BIKE_LANE': 3,
# for roadline
'TYPE_UNKNOWN': -1,
'TYPE_BROKEN_SINGLE_WHITE': 6,
'TYPE_SOLID_SINGLE_WHITE': 7,
'TYPE_SOLID_DOUBLE_WHITE': 8,
'TYPE_BROKEN_SINGLE_YELLOW': 9,
'TYPE_BROKEN_DOUBLE_YELLOW': 10,
'TYPE_SOLID_SINGLE_YELLOW': 11,
'TYPE_SOLID_DOUBLE_YELLOW': 12,
'TYPE_PASSING_DOUBLE_YELLOW': 13,
# for roadedge
'TYPE_ROAD_EDGE_BOUNDARY': 15,
'TYPE_ROAD_EDGE_MEDIAN': 16,
# for stopsign
'TYPE_STOP_SIGN': 17,
# for crosswalk
'TYPE_CROSSWALK': 18,
# for speed bump
'TYPE_SPEED_BUMP': 19
}
object_type = {
0: 'TYPE_UNSET',
1: 'TYPE_VEHICLE',
2: 'TYPE_PEDESTRIAN',
3: 'TYPE_CYCLIST',
4: 'TYPE_OTHER'
}
def decode_tracks_from_proto(scenario):
sdc_track_index = scenario.sdc_track_index
track_index_predict = [i.track_index for i in scenario.tracks_to_predict]
object_id_interest = [i for i in scenario.objects_of_interest]
track_infos = {
'object_id': [], # {0: unset, 1: vehicle, 2: pedestrian, 3: cyclist, 4: others}
'object_type': [],
'states': [],
'valid': [],
'role': [],
}
# tracks mean N number of objects, e.g. len(tracks) = 55
# each track has 91 states, e.g. len(tracks[0].states) == 91
# each state has 10 attributes: center_x, center_y, center_z, length, ..., velocity_y, valid
for i, cur_data in enumerate(scenario.tracks):
step_state = []
step_valid = []
for s in cur_data.states: # n_steps
step_state.append(
[
s.center_x,
s.center_y,
s.center_z,
s.length,
s.width,
s.height,
s.heading,
s.velocity_x,
s.velocity_y,
]
)
step_valid.append(s.valid)
# This angle is normalized to [-pi, pi). The velocity vector in m/s
track_infos['object_id'].append(cur_data.id) # id of object in this track
track_infos['object_type'].append(cur_data.object_type - 1)
track_infos['states'].append(np.array(step_state, dtype=np.float32))
track_infos['valid'].append(np.array(step_valid))
track_infos['role'].append([False, False, False])
if i in track_index_predict:
track_infos['role'][-1][2] = True # predict=2
if cur_data.id in object_id_interest:
track_infos['role'][-1][1] = True # interest=1
if i == sdc_track_index:
track_infos['role'][-1][0] = True # ego_vehicle=0
track_infos['states'] = np.array(track_infos['states'], dtype=np.float32) # (n_agent, n_step, 9)
track_infos['valid'] = np.array(track_infos['valid'], dtype=np.bool_)
track_infos['role'] = np.array(track_infos['role'], dtype=np.bool_)
track_infos['object_id'] = np.array(track_infos['object_id'], dtype=np.int64)
track_infos['object_type'] = np.array(track_infos['object_type'], dtype=np.uint8)
track_infos['tracks_to_predict'] = np.array(track_index_predict, dtype=np.int64)
return track_infos
from collections import defaultdict
def decode_map_features_from_proto(map_features):
map_infos = {
'lane': [],
'road_line': [],
'road_edge': [],
'stop_sign': [],
'crosswalk': [],
'speed_bump': [],
'lane_dict': {},
'lane2other_dict': {}
}
polylines = []
point_cnt = 0
lane2other_dict = defaultdict(list)
for cur_data in map_features:
cur_info = {'id': cur_data.id}
if cur_data.lane.ByteSize() > 0:
cur_info['speed_limit_mph'] = cur_data.lane.speed_limit_mph
cur_info['type'] = cur_data.lane.type + 1 # 0: undefined, 1: freeway, 2: surface_street, 3: bike_lane
cur_info['left_neighbors'] = [lane.feature_id for lane in cur_data.lane.left_neighbors]
cur_info['right_neighbors'] = [lane.feature_id for lane in cur_data.lane.right_neighbors]
cur_info['interpolating'] = cur_data.lane.interpolating
cur_info['entry_lanes'] = list(cur_data.lane.entry_lanes)
cur_info['exit_lanes'] = list(cur_data.lane.exit_lanes)
cur_info['left_boundary_type'] = [x.boundary_type + 5 for x in cur_data.lane.left_boundaries]
cur_info['right_boundary_type'] = [x.boundary_type + 5 for x in cur_data.lane.right_boundaries]
cur_info['left_boundary'] = [x.boundary_feature_id for x in cur_data.lane.left_boundaries]
cur_info['right_boundary'] = [x.boundary_feature_id for x in cur_data.lane.right_boundaries]
cur_info['left_boundary_start_index'] = [lane.lane_start_index for lane in cur_data.lane.left_boundaries]
cur_info['left_boundary_end_index'] = [lane.lane_end_index for lane in cur_data.lane.left_boundaries]
cur_info['right_boundary_start_index'] = [lane.lane_start_index for lane in cur_data.lane.right_boundaries]
cur_info['right_boundary_end_index'] = [lane.lane_end_index for lane in cur_data.lane.right_boundaries]
lane2other_dict[cur_data.id].extend(cur_info['left_boundary'])
lane2other_dict[cur_data.id].extend(cur_info['right_boundary'])
global_type = cur_info['type']
cur_polyline = np.stack(
[np.array([point.x, point.y, point.z, global_type, cur_data.id]) for point in cur_data.lane.polyline],
axis=0)
cur_polyline = np.concatenate((cur_polyline[:, 0:3], cur_polyline[:, 3:]), axis=-1)
if cur_polyline.shape[0] <= 1:
continue
map_infos['lane'].append(cur_info)
map_infos['lane_dict'][cur_data.id] = cur_info
elif cur_data.road_line.ByteSize() > 0:
cur_info['type'] = cur_data.road_line.type + 5
global_type = cur_info['type']
cur_polyline = np.stack([np.array([point.x, point.y, point.z, global_type, cur_data.id]) for point in
cur_data.road_line.polyline], axis=0)
cur_polyline = np.concatenate((cur_polyline[:, 0:3], cur_polyline[:, 3:]), axis=-1)
if cur_polyline.shape[0] <= 1:
continue
map_infos['road_line'].append(cur_info) # (num_points, 5)
elif cur_data.road_edge.ByteSize() > 0:
cur_info['type'] = cur_data.road_edge.type + 14
global_type = cur_info['type']
cur_polyline = np.stack([np.array([point.x, point.y, point.z, global_type, cur_data.id]) for point in
cur_data.road_edge.polyline], axis=0)
cur_polyline = np.concatenate((cur_polyline[:, 0:3], cur_polyline[:, 3:]), axis=-1)
if cur_polyline.shape[0] <= 1:
continue
map_infos['road_edge'].append(cur_info)
elif cur_data.stop_sign.ByteSize() > 0:
cur_info['lane_ids'] = list(cur_data.stop_sign.lane)
for i in cur_info['lane_ids']:
lane2other_dict[i].append(cur_data.id)
point = cur_data.stop_sign.position
cur_info['position'] = np.array([point.x, point.y, point.z])
global_type = polyline_type['TYPE_STOP_SIGN']
cur_polyline = np.array([point.x, point.y, point.z, global_type, cur_data.id]).reshape(1, 5)
if cur_polyline.shape[0] <= 1:
continue
map_infos['stop_sign'].append(cur_info)
elif cur_data.crosswalk.ByteSize() > 0:
global_type = polyline_type['TYPE_CROSSWALK']
cur_polyline = np.stack([np.array([point.x, point.y, point.z, global_type, cur_data.id]) for point in
cur_data.crosswalk.polygon], axis=0)
cur_polyline = np.concatenate((cur_polyline[:, 0:3], cur_polyline[:, 3:]), axis=-1)
if cur_polyline.shape[0] <= 1:
continue
map_infos['crosswalk'].append(cur_info)
elif cur_data.speed_bump.ByteSize() > 0:
global_type = polyline_type['TYPE_SPEED_BUMP']
cur_polyline = np.stack([np.array([point.x, point.y, point.z, global_type, cur_data.id]) for point in
cur_data.speed_bump.polygon], axis=0)
cur_polyline = np.concatenate((cur_polyline[:, 0:3], cur_polyline[:, 3:]), axis=-1)
if cur_polyline.shape[0] <= 1:
continue
map_infos['speed_bump'].append(cur_info)
else:
continue
polylines.append(cur_polyline)
cur_info['polyline_index'] = (point_cnt, point_cnt + len(cur_polyline)) # (start index of point in current scenario, end index of point in current scenario)
point_cnt += len(cur_polyline)
polylines = np.concatenate(polylines, axis=0).astype(np.float32)
map_infos['all_polylines'] = polylines # (num_of_total_points_in_current_scenario, 5)
map_infos['lane2other_dict'] = lane2other_dict
return map_infos
def decode_dynamic_map_states_from_proto(dynamic_map_states):
signal_state = {
0: 'LANE_STATE_UNKNOWN',
# States for traffic signals with arrows.
1: 'LANE_STATE_ARROW_STOP',
2: 'LANE_STATE_ARROW_CAUTION',
3: 'LANE_STATE_ARROW_GO',
# Standard round traffic signals.
4: 'LANE_STATE_STOP',
5: 'LANE_STATE_CAUTION',
6: 'LANE_STATE_GO',
# Flashing light signals.
7: 'LANE_STATE_FLASHING_STOP',
8: 'LANE_STATE_FLASHING_CAUTION'
}
dynamic_map_infos = {
'lane_id': [],
'state': [],
'stop_point': []
}
for cur_data in dynamic_map_states: # len(dynamic_map_states) = num_timestamp
lane_id, state, stop_point = [], [], []
for cur_signal in cur_data.lane_states: # (num_observed_signals)
lane_id.append(cur_signal.lane)
state.append(signal_state[cur_signal.state])
stop_point.append([cur_signal.stop_point.x, cur_signal.stop_point.y, cur_signal.stop_point.z])
dynamic_map_infos['lane_id'].append(np.array([lane_id]))
dynamic_map_infos['state'].append(np.array([state]))
dynamic_map_infos['stop_point'].append(np.array([stop_point]))
return dynamic_map_infos
# def process_single_data(scenario):
# info = {}
# info['scenario_id'] = scenario.scenario_id
# info['timestamps_seconds'] = list(scenario.timestamps_seconds) # list of int of shape (91)
# info['current_time_index'] = scenario.current_time_index # int, 10
# info['sdc_track_index'] = scenario.sdc_track_index # int
# info['objects_of_interest'] = list(scenario.objects_of_interest) # list, could be empty list
# info['tracks_to_predict'] = {
# 'track_index': [cur_pred.track_index for cur_pred in scenario.tracks_to_predict],
# 'difficulty': [cur_pred.difficulty for cur_pred in scenario.tracks_to_predict]
# } # for training: suggestion of objects to train on, for val/test: need to be predicted
# # decode tracks data
# track_infos = decode_tracks_from_proto(scenario.tracks)
# info['tracks_to_predict']['object_type'] = [track_infos['object_type'][cur_idx] for cur_idx in
# info['tracks_to_predict']['track_index']]
# # decode map related data
# map_infos = decode_map_features_from_proto(scenario.map_features)
# dynamic_map_infos = decode_dynamic_map_states_from_proto(scenario.dynamic_map_states)
# save_infos = {
# 'track_infos': track_infos,
# 'map_infos': map_infos,
# 'dynamic_map_infos': dynamic_map_infos,
# }
# save_infos.update(info)
# return save_infos
def wm2argo(file, input_dir, output_dir, existing_files=[], output_dir_tfrecords_splitted=None):
file_path = os.path.join(input_dir, file)
dataset = tf.data.TFRecordDataset(file_path, compression_type='', num_parallel_reads=3)
for cnt, tf_data in tqdm(enumerate(dataset), leave=False, desc=f'Process {file}...'):
scenario = scenario_pb2.Scenario()
scenario.ParseFromString(bytearray(tf_data.numpy()))
scenario_id = scenario.scenario_id
tqdm.write(f"idx: {cnt}, scenario_id: {scenario_id} of {file}")
if f'{scenario_id}.pkl' not in existing_files:
map_infos = decode_map_features_from_proto(scenario.map_features)
track_infos = decode_tracks_from_proto(scenario)
dynamic_map_infos = decode_dynamic_map_states_from_proto(scenario.dynamic_map_states)
sdc_track_index = scenario.sdc_track_index # int
av_id = track_infos['object_id'][sdc_track_index]
# if len(track_infos['tracks_to_predict']) < 1:
# return
current_time_index = scenario.current_time_index
tf_lights = process_dynamic_map(dynamic_map_infos)
tf_current_light = tf_lights.loc[tf_lights["time_step"] == current_time_index] # 10 (history) + 1 (current) + 80 (future)
map_data = get_map_features(map_infos, tf_current_light)
# new_agents_array = process_agent(track_infos, tracks_to_predict, scenario_id, 0, 91) # mtr2argo
data = dict()
data.update(map_data)
data['scenario_id'] = scenario_id
data['agent'] = get_agent_features(track_infos, av_id, num_historical_steps=current_time_index + 1, num_steps=91)
with open(os.path.join(output_dir, f'{scenario_id}.pkl'), "wb+") as f:
pickle.dump(data, f)
if output_dir_tfrecords_splitted is not None:
tf_file = os.path.join(output_dir_tfrecords_splitted, f'{scenario_id}.tfrecords')
if not os.path.exists(tf_file):
with tf.io.TFRecordWriter(tf_file) as file_writer:
file_writer.write(tf_data.numpy())
def batch_process9s_transformer(input_dir, output_dir, split, num_workers=2):
signal.signal(signal.SIGINT, signal.SIG_IGN)
output_dir_tfrecords_splitted = None
if split == "validation":
output_dir_tfrecords_splitted = os.path.join(output_dir, 'validation_tfrecords_splitted')
os.makedirs(output_dir_tfrecords_splitted, exist_ok=True)
input_dir = os.path.join(input_dir, split)
output_dir = os.path.join(output_dir, split)
os.makedirs(output_dir, exist_ok=True)
packages = sorted(os.listdir(input_dir))
existing_files = sorted(os.listdir(output_dir))
func = partial(
wm2argo,
output_dir=output_dir,
input_dir=input_dir,
existing_files=existing_files,
output_dir_tfrecords_splitted=output_dir_tfrecords_splitted
)
try:
with multiprocessing.Pool(num_workers, maxtasksperchild=10) as p:
r = list(tqdm(p.imap_unordered(func, packages), total=len(packages)))
except KeyboardInterrupt:
p.terminate()
p.join()
def generate_meta_infos(data_dir):
import json
meta_infos = dict()
for split in tqdm(['training', 'validation', 'test'], leave=False):
if not os.path.exists(os.path.join(data_dir, split)):
continue
split_infos = dict()
files = os.listdir(os.path.join(data_dir, split))
for file in tqdm(files, leave=False):
try:
data = pickle.load(open(os.path.join(data_dir, split, file), 'rb'))
except Exception as e:
tqdm.write(f'Failed to load scenario {file} due to {e}')
continue
scenario_infos = dict(num_agents=data['agent']['num_nodes'])
scenario_id = data['scenario_id']
split_infos[scenario_id] = scenario_infos
meta_infos[split] = split_infos
with open(os.path.join(data_dir, 'meta_infos.json'), 'w', encoding='utf-8') as f:
json.dump(meta_infos, f, indent=4)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument('--input_dir', type=str, default='data/waymo/')
parser.add_argument('--output_dir', type=str, default='data/waymo_processed/')
parser.add_argument('--split', type=str, default='validation')
parser.add_argument('--no_batch', action='store_true')
parser.add_argument('--disable_invalid', action="store_true")
parser.add_argument('--generate_meta_infos', action="store_true")
args = parser.parse_args()
if args.generate_meta_infos:
generate_meta_infos(args.output_dir)
elif args.no_batch:
output_dir_tfrecords_splitted = None
if args.split == "validation":
output_dir_tfrecords_splitted = os.path.join(args.output_dir, 'validation_tfrecords_splitted')
os.makedirs(output_dir_tfrecords_splitted, exist_ok=True)
input_dir = os.path.join(args.input_dir, args.split)
output_dir = os.path.join(args.output_dir, args.split)
os.makedirs(output_dir, exist_ok=True)
files = sorted(os.listdir(input_dir))
os.makedirs(args.output_dir, exist_ok=True)
for file in tqdm(files, leave=False, desc=f'Process {args.split}...'):
wm2argo(file, input_dir, output_dir, output_dir_tfrecords_splitted)
else:
batch_process9s_transformer(args.input_dir, args.output_dir, args.split, num_workers=96)