File size: 44,675 Bytes
c1a7f73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 |
# Not a contribution
# Changes made by NVIDIA CORPORATION & AFFILIATES enabling <CAT-K> or otherwise documented as
# NVIDIA-proprietary are not a contribution and subject to the following terms and conditions:
# SPDX-FileCopyrightText: Copyright (c) <year> NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
import signal
import multiprocessing
import os
import numpy as np
import pandas as pd
import tensorflow as tf
import torch
import pickle
import easydict
from functools import partial
from scipy.interpolate import interp1d
from argparse import ArgumentParser
from tqdm import tqdm
from typing import Any, Dict, List, Optional
from waymo_open_dataset.protos import scenario_pb2
MIN_VALID_STEPS = 15
_polygon_types = ['VEHICLE', 'BIKE', 'BUS', 'PEDESTRIAN']
_polygon_light_type = ['LANE_STATE_STOP', 'LANE_STATE_GO', 'LANE_STATE_CAUTION', 'LANE_STATE_UNKNOWN']
_point_types = ['DASH_SOLID_YELLOW', 'DASH_SOLID_WHITE', 'DASHED_WHITE', 'DASHED_YELLOW',
'DOUBLE_SOLID_YELLOW', 'DOUBLE_SOLID_WHITE', 'DOUBLE_DASH_YELLOW', 'DOUBLE_DASH_WHITE',
'SOLID_YELLOW', 'SOLID_WHITE', 'SOLID_DASH_WHITE', 'SOLID_DASH_YELLOW', 'EDGE',
'NONE', 'UNKNOWN', 'CROSSWALK', 'CENTERLINE']
_polygon_to_polygon_types = ['NONE', 'PRED', 'SUCC', 'LEFT', 'RIGHT']
Lane_type_hash = {
4: "BIKE",
3: "VEHICLE",
2: "VEHICLE",
1: "BUS"
}
boundary_type_hash = {
5: "UNKNOWN",
6: "DASHED_WHITE",
7: "SOLID_WHITE",
8: "DOUBLE_DASH_WHITE",
9: "DASHED_YELLOW",
10: "DOUBLE_DASH_YELLOW",
11: "SOLID_YELLOW",
12: "DOUBLE_SOLID_YELLOW",
13: "DASH_SOLID_YELLOW",
14: "UNKNOWN",
15: "EDGE",
16: "EDGE"
}
def safe_list_index(ls: List[Any], elem: Any) -> Optional[int]:
try:
return ls.index(elem)
except ValueError:
return None
# def get_agent_features(df: pd.DataFrame, av_id, num_historical_steps=11, dim=3, num_steps=91) -> Dict[str, Any]:
# if args.disable_invalid: # filter out agents that are unseen during the historical time steps
# historical_df = df[df['timestep'] == num_historical_steps-1] # extract the timestep==10 (current)
# agent_ids = list(historical_df['track_id'].unique()) # these agents are seen at timestep==10 (current)
# df = df[df['track_id'].isin(agent_ids)] # remove other agents
# else:
# agent_ids = list(df['track_id'].unique())
# num_agents = len(agent_ids)
# # initialization
# valid_mask = torch.zeros(num_agents, num_steps, dtype=torch.bool)
# current_valid_mask = torch.zeros(num_agents, dtype=torch.bool)
# predict_mask = torch.zeros(num_agents, num_steps, dtype=torch.bool)
# agent_id: List[Optional[str]] = [None] * num_agents
# agent_type = torch.zeros(num_agents, dtype=torch.uint8)
# agent_category = torch.zeros(num_agents, dtype=torch.uint8)
# position = torch.zeros(num_agents, num_steps, dim, dtype=torch.float)
# heading = torch.zeros(num_agents, num_steps, dtype=torch.float)
# velocity = torch.zeros(num_agents, num_steps, dim, dtype=torch.float)
# shape = torch.zeros(num_agents, num_steps, dim, dtype=torch.float)
# for track_id, track_df in df.groupby('track_id'):
# agent_idx = agent_ids.index(track_id)
# all_agent_steps = track_df['timestep'].values
# valid_agent_steps = all_agent_steps[track_df['validity'].astype(np.bool_)].astype(np.int32)
# valid_mask[agent_idx, valid_agent_steps] = True
# current_valid_mask[agent_idx] = valid_mask[agent_idx, num_historical_steps - 1] # current timestep 10
# if args.disable_invalid:
# predict_mask[agent_idx, valid_agent_steps] = True
# else:
# predict_mask[agent_idx] = True
# predict_mask[agent_idx, :num_historical_steps] = False
# if not current_valid_mask[agent_idx]:
# predict_mask[agent_idx, num_historical_steps:] = False
# # TODO: why using vector_repr?
# if vector_repr: # a time step t is valid only when both t and t-1 are valid
# valid_mask[agent_idx, 1 : num_historical_steps] = (
# valid_mask[agent_idx, : num_historical_steps - 1] &
# valid_mask[agent_idx, 1 : num_historical_steps])
# valid_mask[agent_idx, 0] = False
# agent_id[agent_idx] = track_id
# agent_type[agent_idx] = _agent_types.index(track_df['object_type'].values[0])
# agent_category[agent_idx] = track_df['object_category'].values[0]
# position[agent_idx, valid_agent_steps, :3] = torch.from_numpy(np.stack([track_df['position_x'].values[valid_agent_steps],
# track_df['position_y'].values[valid_agent_steps],
# track_df['position_z'].values[valid_agent_steps]],
# axis=-1)).float()
# heading[agent_idx, valid_agent_steps] = torch.from_numpy(track_df['heading'].values[valid_agent_steps]).float()
# velocity[agent_idx, valid_agent_steps, :2] = torch.from_numpy(np.stack([track_df['velocity_x'].values[valid_agent_steps],
# track_df['velocity_y'].values[valid_agent_steps]],
# axis=-1)).float()
# shape[agent_idx, valid_agent_steps, :3] = torch.from_numpy(np.stack([track_df['length'].values[valid_agent_steps],
# track_df['width'].values[valid_agent_steps],
# track_df["height"].values[valid_agent_steps]],
# axis=-1)).float()
# av_idx = agent_id.index(av_id)
# if split == 'test':
# predict_mask[current_valid_mask
# | (agent_category == 2)
# | (agent_category == 3), num_historical_steps:] = True
# return {
# 'num_nodes': num_agents,
# 'av_index': av_idx,
# 'valid_mask': valid_mask,
# 'predict_mask': predict_mask,
# 'id': agent_id,
# 'type': agent_type,
# 'category': agent_category,
# 'position': position,
# 'heading': heading,
# 'velocity': velocity,
# 'shape': shape
# }
def get_agent_features(track_infos: Dict[str, np.ndarray], av_id: int, num_historical_steps: int, num_steps: int) -> Dict[str, Any]:
agent_idx_to_add = []
for i in range(len(track_infos['object_id'])):
is_visible = track_infos['valid'][i, num_historical_steps - 1]
valid_steps = np.where(track_infos['valid'][i])[0]
valid_start, valid_end = valid_steps[0], valid_steps[-1]
is_valid = (valid_end - valid_start + 1) >= MIN_VALID_STEPS
if (is_visible or not args.disable_invalid) and is_valid:
agent_idx_to_add.append(i)
num_agents = len(agent_idx_to_add)
out_dict = {
'num_nodes': num_agents,
'valid_mask': torch.zeros(num_agents, num_steps, dtype=torch.bool),
'role': torch.zeros(num_agents, 3, dtype=torch.bool),
'id': torch.zeros(num_agents, dtype=torch.int64) - 1,
'type': torch.zeros(num_agents, dtype=torch.uint8),
'category': torch.zeros(num_agents, dtype=torch.uint8),
'position': torch.zeros(num_agents, num_steps, 3, dtype=torch.float),
'heading': torch.zeros(num_agents, num_steps, dtype=torch.float),
'velocity': torch.zeros(num_agents, num_steps, 2, dtype=torch.float),
'shape': torch.zeros(num_agents, num_steps, 3, dtype=torch.float),
}
for i, idx in enumerate(agent_idx_to_add):
out_dict['role'][i] = torch.from_numpy(track_infos['role'][idx])
out_dict['id'][i] = track_infos['object_id'][idx]
out_dict['type'][i] = track_infos['object_type'][idx]
out_dict['category'][i] = idx in track_infos['tracks_to_predict']
valid = track_infos["valid"][idx] # [n_step]
states = track_infos["states"][idx]
object_shape = states[:, 3:6] # [n_step, 3], length, width, height
object_shape = object_shape[valid].mean(axis=0) # [3]
out_dict["shape"][i] = torch.from_numpy(object_shape)
valid_steps = np.where(valid)[0]
position = states[:, :3] # [n_step, dim], x, y, z
velocity = states[:, 7:9] # [n_step, 2], vx, vy
heading = states[:, 6] # [n_step], heading
# valid.sum() should > 1:
t_start, t_end = valid_steps[0], valid_steps[-1]
f_pos = interp1d(valid_steps, position[valid], axis=0)
f_vel = interp1d(valid_steps, velocity[valid], axis=0)
f_yaw = interp1d(valid_steps, np.unwrap(heading[valid], axis=0), axis=0)
t_in = np.arange(t_start, t_end + 1)
out_dict["valid_mask"][i, t_start : t_end + 1] = True
out_dict["position"][i, t_start : t_end + 1] = torch.from_numpy(f_pos(t_in))
out_dict["velocity"][i, t_start : t_end + 1] = torch.from_numpy(f_vel(t_in))
out_dict["heading"][i, t_start : t_end + 1] = torch.from_numpy(f_yaw(t_in))
out_dict['av_idx'] = out_dict['id'].tolist().index(av_id)
return out_dict
def get_map_features(map_infos, tf_current_light, dim=3):
lane_segments = map_infos['lane']
all_polylines = map_infos["all_polylines"]
crosswalks = map_infos['crosswalk']
road_edges = map_infos['road_edge']
road_lines = map_infos['road_line']
lane_segment_ids = [info["id"] for info in lane_segments]
cross_walk_ids = [info["id"] for info in crosswalks]
road_edge_ids = [info["id"] for info in road_edges]
road_line_ids = [info["id"] for info in road_lines]
polygon_ids = lane_segment_ids + road_edge_ids + road_line_ids + cross_walk_ids
num_polygons = len(lane_segment_ids) + len(road_edge_ids) + len(road_line_ids) + len(cross_walk_ids)
# initialization
polygon_type = torch.zeros(num_polygons, dtype=torch.uint8)
polygon_light_type = torch.ones(num_polygons, dtype=torch.uint8) * 3
# list of (num_of_segments,), each element has shape of (num_of_points_of_current_segment - 1, dim)
point_position: List[Optional[torch.Tensor]] = [None] * num_polygons
point_orientation: List[Optional[torch.Tensor]] = [None] * num_polygons
point_magnitude: List[Optional[torch.Tensor]] = [None] * num_polygons
point_height: List[Optional[torch.Tensor]] = [None] * num_polygons
point_type: List[Optional[torch.Tensor]] = [None] * num_polygons
for lane_segment in lane_segments:
lane_segment = easydict.EasyDict(lane_segment)
lane_segment_idx = polygon_ids.index(lane_segment.id)
polyline_index = lane_segment.polyline_index # (start index of point in current scenario, end index of point in current scenario)
centerline = all_polylines[polyline_index[0] : polyline_index[1], :] # (num_of_points_of_current_segment, 5)
centerline = torch.from_numpy(centerline).float()
polygon_type[lane_segment_idx] = _polygon_types.index(Lane_type_hash[lane_segment.type])
res = tf_current_light[tf_current_light["lane_id"] == str(lane_segment.id)]
if len(res) != 0:
polygon_light_type[lane_segment_idx] = _polygon_light_type.index(res["state"].item())
point_position[lane_segment_idx] = torch.cat([centerline[:-1, :dim]], dim=0) # (num_of_points_of_current_segment - 1, 3)
center_vectors = centerline[1:] - centerline[:-1] # (num_of_points_of_current_segment - 1, 5)
point_orientation[lane_segment_idx] = torch.cat([torch.atan2(center_vectors[:, 1], center_vectors[:, 0])], dim=0) # (num_of_points_of_current_segment - 1,)
point_magnitude[lane_segment_idx] = torch.norm(torch.cat([center_vectors[:, :2]], dim=0), p=2, dim=-1) # (num_of_points_of_current_segment - 1,)
point_height[lane_segment_idx] = torch.cat([center_vectors[:, 2]], dim=0) # (num_of_points_of_current_segment - 1,)
center_type = _point_types.index('CENTERLINE')
point_type[lane_segment_idx] = torch.cat(
[torch.full((len(center_vectors),), center_type, dtype=torch.uint8)], dim=0)
for lane_segment in road_edges:
lane_segment = easydict.EasyDict(lane_segment)
lane_segment_idx = polygon_ids.index(lane_segment.id)
polyline_index = lane_segment.polyline_index
centerline = all_polylines[polyline_index[0] : polyline_index[1], :]
centerline = torch.from_numpy(centerline).float()
polygon_type[lane_segment_idx] = _polygon_types.index("VEHICLE")
point_position[lane_segment_idx] = torch.cat([centerline[:-1, :dim]], dim=0)
center_vectors = centerline[1:] - centerline[:-1]
point_orientation[lane_segment_idx] = torch.cat([torch.atan2(center_vectors[:, 1], center_vectors[:, 0])], dim=0)
point_magnitude[lane_segment_idx] = torch.norm(torch.cat([center_vectors[:, :2]], dim=0), p=2, dim=-1)
point_height[lane_segment_idx] = torch.cat([center_vectors[:, 2]], dim=0)
center_type = _point_types.index('EDGE')
point_type[lane_segment_idx] = torch.cat(
[torch.full((len(center_vectors),), center_type, dtype=torch.uint8)], dim=0)
for lane_segment in road_lines:
lane_segment = easydict.EasyDict(lane_segment)
lane_segment_idx = polygon_ids.index(lane_segment.id)
polyline_index = lane_segment.polyline_index
centerline = all_polylines[polyline_index[0] : polyline_index[1], :]
centerline = torch.from_numpy(centerline).float()
polygon_type[lane_segment_idx] = _polygon_types.index("VEHICLE")
point_position[lane_segment_idx] = torch.cat([centerline[:-1, :dim]], dim=0)
center_vectors = centerline[1:] - centerline[:-1]
point_orientation[lane_segment_idx] = torch.cat([torch.atan2(center_vectors[:, 1], center_vectors[:, 0])], dim=0)
point_magnitude[lane_segment_idx] = torch.norm(torch.cat([center_vectors[:, :2]], dim=0), p=2, dim=-1)
point_height[lane_segment_idx] = torch.cat([center_vectors[:, 2]], dim=0)
center_type = _point_types.index(boundary_type_hash[lane_segment.type])
point_type[lane_segment_idx] = torch.cat(
[torch.full((len(center_vectors),), center_type, dtype=torch.uint8)], dim=0)
for crosswalk in crosswalks:
crosswalk = easydict.EasyDict(crosswalk)
lane_segment_idx = polygon_ids.index(crosswalk.id)
polyline_index = crosswalk.polyline_index
centerline = all_polylines[polyline_index[0] : polyline_index[1], :]
centerline = torch.from_numpy(centerline).float()
polygon_type[lane_segment_idx] = _polygon_types.index("PEDESTRIAN")
point_position[lane_segment_idx] = torch.cat([centerline[:-1, :dim]], dim=0)
center_vectors = centerline[1:] - centerline[:-1]
point_orientation[lane_segment_idx] = torch.cat([torch.atan2(center_vectors[:, 1], center_vectors[:, 0])], dim=0)
point_magnitude[lane_segment_idx] = torch.norm(torch.cat([center_vectors[:, :2]], dim=0), p=2, dim=-1)
point_height[lane_segment_idx] = torch.cat([center_vectors[:, 2]], dim=0)
center_type = _point_types.index("CROSSWALK")
point_type[lane_segment_idx] = torch.cat(
[torch.full((len(center_vectors),), center_type, dtype=torch.uint8)], dim=0)
# (num_of_segments,), each element represents the number of points of the segment
num_points = torch.tensor([point.size(0) for point in point_position], dtype=torch.long)
# (2, total_num_of_points_of_all_segments), store the point index of segment and its corresponding segment index
# e.g. a scenario has 203 segments, and totally 14039 points:
# tensor([[ 0, 1, 2, ..., 14927, 14928, 14929],
# [ 0, 0, 0, ..., 202, 202, 202]]) => polygon_ids.index(lane_segment.id)
point_to_polygon_edge_index = torch.stack(
[torch.arange(num_points.sum(), dtype=torch.long),
torch.arange(num_polygons, dtype=torch.long).repeat_interleave(num_points)], dim=0)
# list of (num_of_lane_segments,)
polygon_to_polygon_edge_index = []
# list of (num_of_lane_segments,)
polygon_to_polygon_type = []
for lane_segment in lane_segments:
lane_segment = easydict.EasyDict(lane_segment)
lane_segment_idx = polygon_ids.index(lane_segment.id)
pred_inds = []
for pred in lane_segment.entry_lanes:
pred_idx = safe_list_index(polygon_ids, pred)
if pred_idx is not None:
pred_inds.append(pred_idx)
if len(pred_inds) != 0:
polygon_to_polygon_edge_index.append(
torch.stack([torch.tensor(pred_inds, dtype=torch.long),
torch.full((len(pred_inds),), lane_segment_idx, dtype=torch.long)], dim=0))
polygon_to_polygon_type.append(
torch.full((len(pred_inds),), _polygon_to_polygon_types.index('PRED'), dtype=torch.uint8))
succ_inds = []
for succ in lane_segment.exit_lanes:
succ_idx = safe_list_index(polygon_ids, succ)
if succ_idx is not None:
succ_inds.append(succ_idx)
if len(succ_inds) != 0:
polygon_to_polygon_edge_index.append(
torch.stack([torch.tensor(succ_inds, dtype=torch.long),
torch.full((len(succ_inds),), lane_segment_idx, dtype=torch.long)], dim=0))
polygon_to_polygon_type.append(
torch.full((len(succ_inds),), _polygon_to_polygon_types.index('SUCC'), dtype=torch.uint8))
if len(lane_segment.left_neighbors) != 0:
left_neighbor_ids = lane_segment.left_neighbors
for left_neighbor_id in left_neighbor_ids:
left_idx = safe_list_index(polygon_ids, left_neighbor_id)
if left_idx is not None:
polygon_to_polygon_edge_index.append(
torch.tensor([[left_idx], [lane_segment_idx]], dtype=torch.long))
polygon_to_polygon_type.append(
torch.tensor([_polygon_to_polygon_types.index('LEFT')], dtype=torch.uint8))
if len(lane_segment.right_neighbors) != 0:
right_neighbor_ids = lane_segment.right_neighbors
for right_neighbor_id in right_neighbor_ids:
right_idx = safe_list_index(polygon_ids, right_neighbor_id)
if right_idx is not None:
polygon_to_polygon_edge_index.append(
torch.tensor([[right_idx], [lane_segment_idx]], dtype=torch.long))
polygon_to_polygon_type.append(
torch.tensor([_polygon_to_polygon_types.index('RIGHT')], dtype=torch.uint8))
if len(polygon_to_polygon_edge_index) != 0:
polygon_to_polygon_edge_index = torch.cat(polygon_to_polygon_edge_index, dim=1)
polygon_to_polygon_type = torch.cat(polygon_to_polygon_type, dim=0)
else:
polygon_to_polygon_edge_index = torch.tensor([[], []], dtype=torch.long)
polygon_to_polygon_type = torch.tensor([], dtype=torch.uint8)
map_data = {
'map_polygon': {},
'map_point': {},
('map_point', 'to', 'map_polygon'): {},
('map_polygon', 'to', 'map_polygon'): {},
}
map_data['map_polygon']['num_nodes'] = num_polygons # int, number of map segments in the scenario
map_data['map_polygon']['type'] = polygon_type # (num_polygons,) type of each polygon
map_data['map_polygon']['light_type'] = polygon_light_type # (num_polygons,) light type of each polygon, 3 means unknown
if len(num_points) == 0:
map_data['map_point']['num_nodes'] = 0
map_data['map_point']['position'] = torch.tensor([], dtype=torch.float)
map_data['map_point']['orientation'] = torch.tensor([], dtype=torch.float)
map_data['map_point']['magnitude'] = torch.tensor([], dtype=torch.float)
if dim == 3:
map_data['map_point']['height'] = torch.tensor([], dtype=torch.float)
map_data['map_point']['type'] = torch.tensor([], dtype=torch.uint8)
map_data['map_point']['side'] = torch.tensor([], dtype=torch.uint8)
else:
map_data['map_point']['num_nodes'] = num_points.sum().item() # int, number of total points of all segments in the scenario
map_data['map_point']['position'] = torch.cat(point_position, dim=0) # (num_of_total_points_of_all_segments, 3)
map_data['map_point']['orientation'] = torch.cat(point_orientation, dim=0) # (num_of_total_points_of_all_segments,)
map_data['map_point']['magnitude'] = torch.cat(point_magnitude, dim=0) # (num_of_total_points_of_all_segments,)
if dim == 3:
map_data['map_point']['height'] = torch.cat(point_height, dim=0) # (num_of_total_points_of_all_segments,)
map_data['map_point']['type'] = torch.cat(point_type, dim=0) # (num_of_total_points_of_all_segments,) type of point => `_point_types`
map_data['map_point', 'to', 'map_polygon']['edge_index'] = point_to_polygon_edge_index # (2, num_of_total_points_of_all_segments)
map_data['map_polygon', 'to', 'map_polygon']['edge_index'] = polygon_to_polygon_edge_index
map_data['map_polygon', 'to', 'map_polygon']['type'] = polygon_to_polygon_type
if int(os.getenv('DEBUG_MAP', 1)):
import matplotlib.pyplot as plt
plt.axis('equal')
plt.scatter(map_data['map_point']['position'][:, 0],
map_data['map_point']['position'][:, 1], s=0.2, c='black', edgecolors='none')
plt.savefig("debug.png", dpi=600)
return map_data
# def process_agent(track_info, tracks_to_predict, scenario_id, start_timestamp, end_timestamp):
# agents_array = track_info["states"].transpose(1, 0, 2) # (num_timesteps, num_agents, 10) e.g. (91, 15, 10)
# object_id = np.array(track_info["object_id"]) # (num_agents,) global id of each agent
# object_type = track_info["object_type"] # (num_agents,) type of each agent, e.g. 'TYPE_VEHICLE'
# id_hash = {object_id[o_idx]: object_type[o_idx] for o_idx in range(len(object_id))}
# def type_hash(x):
# tp = id_hash[x]
# type_re_hash = {
# "TYPE_VEHICLE": "vehicle",
# "TYPE_PEDESTRIAN": "pedestrian",
# "TYPE_CYCLIST": "cyclist",
# "TYPE_OTHER": "background",
# "TYPE_UNSET": "background"
# }
# return type_re_hash[tp]
# columns = ['observed', 'track_id', 'object_type', 'object_category', 'timestep',
# 'position_x', 'position_y', 'position_z', 'length', 'width', 'height', 'heading', 'velocity_x', 'velocity_y',
# 'scenario_id', 'start_timestamp', 'end_timestamp', 'num_timestamps',
# 'focal_track_id', 'city', 'validity']
# # (num_timesteps, num_agents, 10) e.g. (91, 15, 10)
# new_columns = np.ones((agents_array.shape[0], agents_array.shape[1], 11))
# new_columns[:11, :, 0] = True # observed, 10 timesteps
# new_columns[11:, :, 0] = False # not observed (current + future)
# for index in range(new_columns.shape[0]):
# new_columns[index, :, 4] = int(index) # timestep (0 ~ 90)
# new_columns[..., 1] = object_id
# new_columns[..., 2] = object_id
# new_columns[:, tracks_to_predict['track_index'], 3] = 3
# new_columns[..., 5] = 11
# new_columns[..., 6] = int(start_timestamp) # 0
# new_columns[..., 7] = int(end_timestamp) # 91
# new_columns[..., 8] = int(91) # 91
# new_columns[..., 9] = object_id
# new_columns[..., 10] = 10086
# new_columns = new_columns
# new_agents_array = np.concatenate([new_columns, agents_array], axis=-1) # (num_timesteps, num_agents, 21) e.g. (91, 15, 21)
# # filter out the invalid timestep of agents, reshape to (num_valid_of_timesteps_of_all_agents, 21) e.g. (91, 15, 21) -> (1137, 21)
# if args.disable_invalid:
# new_agents_array = new_agents_array[new_agents_array[..., -1] == 1.0].reshape(-1, new_agents_array.shape[-1])
# else:
# agent_valid_mask = new_agents_array[..., -1] # (num_timesteps, num_agents)
# agent_mask = np.sum(agent_valid_mask, axis=0) > MIN_VALID_STEPS # NOTE: 10 is a empirical parameter
# new_agents_array = new_agents_array[:, agent_mask]
# new_agents_array = new_agents_array.reshape(-1, new_agents_array.shape[-1]) # (91, 15, 21) -> (1365, 21)
# new_agents_array = new_agents_array[..., [0, 1, 2, 3, 4, 11, 12, 13, 14, 15, 16, 17, 18, 19, 5, 6, 7, 8, 9, 10, 20]]
# new_agents_array = pd.DataFrame(data=new_agents_array, columns=columns)
# new_agents_array["object_type"] = new_agents_array["object_type"].apply(func=type_hash)
# new_agents_array["start_timestamp"] = new_agents_array["start_timestamp"].astype(int)
# new_agents_array["end_timestamp"] = new_agents_array["end_timestamp"].astype(int)
# new_agents_array["num_timestamps"] = new_agents_array["num_timestamps"].astype(int)
# new_agents_array["scenario_id"] = scenario_id
# return new_agents_array
def process_dynamic_map(dynamic_map_infos):
lane_ids = dynamic_map_infos["lane_id"]
tf_lights = []
for t in range(len(lane_ids)):
lane_id = lane_ids[t]
time = np.ones_like(lane_id) * t
state = dynamic_map_infos["state"][t]
tf_light = np.concatenate([lane_id, time, state], axis=0)
tf_lights.append(tf_light)
tf_lights = np.concatenate(tf_lights, axis=1).transpose(1, 0)
tf_lights = pd.DataFrame(data=tf_lights, columns=["lane_id", "time_step", "state"])
tf_lights["time_step"] = tf_lights["time_step"].astype("str")
tf_lights["lane_id"] = tf_lights["lane_id"].astype("str")
tf_lights["state"] = tf_lights["state"].astype("str")
tf_lights.loc[tf_lights["state"].str.contains("STOP"), ["state"]] = (
"LANE_STATE_STOP"
)
tf_lights.loc[tf_lights["state"].str.contains("GO"), ["state"]] = "LANE_STATE_GO"
tf_lights.loc[tf_lights["state"].str.contains("CAUTION"), ["state"]] = (
"LANE_STATE_CAUTION"
)
tf_lights.loc[tf_lights["state"].str.contains("UNKNOWN"), ["state"]] = (
"LANE_STATE_UNKNOWN"
)
return tf_lights
polyline_type = {
# for lane
'TYPE_UNDEFINED': -1,
'TYPE_FREEWAY': 1,
'TYPE_SURFACE_STREET': 2,
'TYPE_BIKE_LANE': 3,
# for roadline
'TYPE_UNKNOWN': -1,
'TYPE_BROKEN_SINGLE_WHITE': 6,
'TYPE_SOLID_SINGLE_WHITE': 7,
'TYPE_SOLID_DOUBLE_WHITE': 8,
'TYPE_BROKEN_SINGLE_YELLOW': 9,
'TYPE_BROKEN_DOUBLE_YELLOW': 10,
'TYPE_SOLID_SINGLE_YELLOW': 11,
'TYPE_SOLID_DOUBLE_YELLOW': 12,
'TYPE_PASSING_DOUBLE_YELLOW': 13,
# for roadedge
'TYPE_ROAD_EDGE_BOUNDARY': 15,
'TYPE_ROAD_EDGE_MEDIAN': 16,
# for stopsign
'TYPE_STOP_SIGN': 17,
# for crosswalk
'TYPE_CROSSWALK': 18,
# for speed bump
'TYPE_SPEED_BUMP': 19
}
object_type = {
0: 'TYPE_UNSET',
1: 'TYPE_VEHICLE',
2: 'TYPE_PEDESTRIAN',
3: 'TYPE_CYCLIST',
4: 'TYPE_OTHER'
}
def decode_tracks_from_proto(scenario):
sdc_track_index = scenario.sdc_track_index
track_index_predict = [i.track_index for i in scenario.tracks_to_predict]
object_id_interest = [i for i in scenario.objects_of_interest]
track_infos = {
'object_id': [], # {0: unset, 1: vehicle, 2: pedestrian, 3: cyclist, 4: others}
'object_type': [],
'states': [],
'valid': [],
'role': [],
}
# tracks mean N number of objects, e.g. len(tracks) = 55
# each track has 91 states, e.g. len(tracks[0].states) == 91
# each state has 10 attributes: center_x, center_y, center_z, length, ..., velocity_y, valid
for i, cur_data in enumerate(scenario.tracks):
step_state = []
step_valid = []
for s in cur_data.states: # n_steps
step_state.append(
[
s.center_x,
s.center_y,
s.center_z,
s.length,
s.width,
s.height,
s.heading,
s.velocity_x,
s.velocity_y,
]
)
step_valid.append(s.valid)
# This angle is normalized to [-pi, pi). The velocity vector in m/s
track_infos['object_id'].append(cur_data.id) # id of object in this track
track_infos['object_type'].append(cur_data.object_type - 1)
track_infos['states'].append(np.array(step_state, dtype=np.float32))
track_infos['valid'].append(np.array(step_valid))
track_infos['role'].append([False, False, False])
if i in track_index_predict:
track_infos['role'][-1][2] = True # predict=2
if cur_data.id in object_id_interest:
track_infos['role'][-1][1] = True # interest=1
if i == sdc_track_index:
track_infos['role'][-1][0] = True # ego_vehicle=0
track_infos['states'] = np.array(track_infos['states'], dtype=np.float32) # (n_agent, n_step, 9)
track_infos['valid'] = np.array(track_infos['valid'], dtype=np.bool_)
track_infos['role'] = np.array(track_infos['role'], dtype=np.bool_)
track_infos['object_id'] = np.array(track_infos['object_id'], dtype=np.int64)
track_infos['object_type'] = np.array(track_infos['object_type'], dtype=np.uint8)
track_infos['tracks_to_predict'] = np.array(track_index_predict, dtype=np.int64)
return track_infos
from collections import defaultdict
def decode_map_features_from_proto(map_features):
map_infos = {
'lane': [],
'road_line': [],
'road_edge': [],
'stop_sign': [],
'crosswalk': [],
'speed_bump': [],
'lane_dict': {},
'lane2other_dict': {}
}
polylines = []
point_cnt = 0
lane2other_dict = defaultdict(list)
for cur_data in map_features:
cur_info = {'id': cur_data.id}
if cur_data.lane.ByteSize() > 0:
cur_info['speed_limit_mph'] = cur_data.lane.speed_limit_mph
cur_info['type'] = cur_data.lane.type + 1 # 0: undefined, 1: freeway, 2: surface_street, 3: bike_lane
cur_info['left_neighbors'] = [lane.feature_id for lane in cur_data.lane.left_neighbors]
cur_info['right_neighbors'] = [lane.feature_id for lane in cur_data.lane.right_neighbors]
cur_info['interpolating'] = cur_data.lane.interpolating
cur_info['entry_lanes'] = list(cur_data.lane.entry_lanes)
cur_info['exit_lanes'] = list(cur_data.lane.exit_lanes)
cur_info['left_boundary_type'] = [x.boundary_type + 5 for x in cur_data.lane.left_boundaries]
cur_info['right_boundary_type'] = [x.boundary_type + 5 for x in cur_data.lane.right_boundaries]
cur_info['left_boundary'] = [x.boundary_feature_id for x in cur_data.lane.left_boundaries]
cur_info['right_boundary'] = [x.boundary_feature_id for x in cur_data.lane.right_boundaries]
cur_info['left_boundary_start_index'] = [lane.lane_start_index for lane in cur_data.lane.left_boundaries]
cur_info['left_boundary_end_index'] = [lane.lane_end_index for lane in cur_data.lane.left_boundaries]
cur_info['right_boundary_start_index'] = [lane.lane_start_index for lane in cur_data.lane.right_boundaries]
cur_info['right_boundary_end_index'] = [lane.lane_end_index for lane in cur_data.lane.right_boundaries]
lane2other_dict[cur_data.id].extend(cur_info['left_boundary'])
lane2other_dict[cur_data.id].extend(cur_info['right_boundary'])
global_type = cur_info['type']
cur_polyline = np.stack(
[np.array([point.x, point.y, point.z, global_type, cur_data.id]) for point in cur_data.lane.polyline],
axis=0)
cur_polyline = np.concatenate((cur_polyline[:, 0:3], cur_polyline[:, 3:]), axis=-1)
if cur_polyline.shape[0] <= 1:
continue
map_infos['lane'].append(cur_info)
map_infos['lane_dict'][cur_data.id] = cur_info
elif cur_data.road_line.ByteSize() > 0:
cur_info['type'] = cur_data.road_line.type + 5
global_type = cur_info['type']
cur_polyline = np.stack([np.array([point.x, point.y, point.z, global_type, cur_data.id]) for point in
cur_data.road_line.polyline], axis=0)
cur_polyline = np.concatenate((cur_polyline[:, 0:3], cur_polyline[:, 3:]), axis=-1)
if cur_polyline.shape[0] <= 1:
continue
map_infos['road_line'].append(cur_info) # (num_points, 5)
elif cur_data.road_edge.ByteSize() > 0:
cur_info['type'] = cur_data.road_edge.type + 14
global_type = cur_info['type']
cur_polyline = np.stack([np.array([point.x, point.y, point.z, global_type, cur_data.id]) for point in
cur_data.road_edge.polyline], axis=0)
cur_polyline = np.concatenate((cur_polyline[:, 0:3], cur_polyline[:, 3:]), axis=-1)
if cur_polyline.shape[0] <= 1:
continue
map_infos['road_edge'].append(cur_info)
elif cur_data.stop_sign.ByteSize() > 0:
cur_info['lane_ids'] = list(cur_data.stop_sign.lane)
for i in cur_info['lane_ids']:
lane2other_dict[i].append(cur_data.id)
point = cur_data.stop_sign.position
cur_info['position'] = np.array([point.x, point.y, point.z])
global_type = polyline_type['TYPE_STOP_SIGN']
cur_polyline = np.array([point.x, point.y, point.z, global_type, cur_data.id]).reshape(1, 5)
if cur_polyline.shape[0] <= 1:
continue
map_infos['stop_sign'].append(cur_info)
elif cur_data.crosswalk.ByteSize() > 0:
global_type = polyline_type['TYPE_CROSSWALK']
cur_polyline = np.stack([np.array([point.x, point.y, point.z, global_type, cur_data.id]) for point in
cur_data.crosswalk.polygon], axis=0)
cur_polyline = np.concatenate((cur_polyline[:, 0:3], cur_polyline[:, 3:]), axis=-1)
if cur_polyline.shape[0] <= 1:
continue
map_infos['crosswalk'].append(cur_info)
elif cur_data.speed_bump.ByteSize() > 0:
global_type = polyline_type['TYPE_SPEED_BUMP']
cur_polyline = np.stack([np.array([point.x, point.y, point.z, global_type, cur_data.id]) for point in
cur_data.speed_bump.polygon], axis=0)
cur_polyline = np.concatenate((cur_polyline[:, 0:3], cur_polyline[:, 3:]), axis=-1)
if cur_polyline.shape[0] <= 1:
continue
map_infos['speed_bump'].append(cur_info)
else:
continue
polylines.append(cur_polyline)
cur_info['polyline_index'] = (point_cnt, point_cnt + len(cur_polyline)) # (start index of point in current scenario, end index of point in current scenario)
point_cnt += len(cur_polyline)
polylines = np.concatenate(polylines, axis=0).astype(np.float32)
map_infos['all_polylines'] = polylines # (num_of_total_points_in_current_scenario, 5)
map_infos['lane2other_dict'] = lane2other_dict
return map_infos
def decode_dynamic_map_states_from_proto(dynamic_map_states):
signal_state = {
0: 'LANE_STATE_UNKNOWN',
# States for traffic signals with arrows.
1: 'LANE_STATE_ARROW_STOP',
2: 'LANE_STATE_ARROW_CAUTION',
3: 'LANE_STATE_ARROW_GO',
# Standard round traffic signals.
4: 'LANE_STATE_STOP',
5: 'LANE_STATE_CAUTION',
6: 'LANE_STATE_GO',
# Flashing light signals.
7: 'LANE_STATE_FLASHING_STOP',
8: 'LANE_STATE_FLASHING_CAUTION'
}
dynamic_map_infos = {
'lane_id': [],
'state': [],
'stop_point': []
}
for cur_data in dynamic_map_states: # len(dynamic_map_states) = num_timestamp
lane_id, state, stop_point = [], [], []
for cur_signal in cur_data.lane_states: # (num_observed_signals)
lane_id.append(cur_signal.lane)
state.append(signal_state[cur_signal.state])
stop_point.append([cur_signal.stop_point.x, cur_signal.stop_point.y, cur_signal.stop_point.z])
dynamic_map_infos['lane_id'].append(np.array([lane_id]))
dynamic_map_infos['state'].append(np.array([state]))
dynamic_map_infos['stop_point'].append(np.array([stop_point]))
return dynamic_map_infos
# def process_single_data(scenario):
# info = {}
# info['scenario_id'] = scenario.scenario_id
# info['timestamps_seconds'] = list(scenario.timestamps_seconds) # list of int of shape (91)
# info['current_time_index'] = scenario.current_time_index # int, 10
# info['sdc_track_index'] = scenario.sdc_track_index # int
# info['objects_of_interest'] = list(scenario.objects_of_interest) # list, could be empty list
# info['tracks_to_predict'] = {
# 'track_index': [cur_pred.track_index for cur_pred in scenario.tracks_to_predict],
# 'difficulty': [cur_pred.difficulty for cur_pred in scenario.tracks_to_predict]
# } # for training: suggestion of objects to train on, for val/test: need to be predicted
# # decode tracks data
# track_infos = decode_tracks_from_proto(scenario.tracks)
# info['tracks_to_predict']['object_type'] = [track_infos['object_type'][cur_idx] for cur_idx in
# info['tracks_to_predict']['track_index']]
# # decode map related data
# map_infos = decode_map_features_from_proto(scenario.map_features)
# dynamic_map_infos = decode_dynamic_map_states_from_proto(scenario.dynamic_map_states)
# save_infos = {
# 'track_infos': track_infos,
# 'map_infos': map_infos,
# 'dynamic_map_infos': dynamic_map_infos,
# }
# save_infos.update(info)
# return save_infos
def wm2argo(file, input_dir, output_dir, existing_files=[], output_dir_tfrecords_splitted=None):
file_path = os.path.join(input_dir, file)
dataset = tf.data.TFRecordDataset(file_path, compression_type='', num_parallel_reads=3)
for cnt, tf_data in tqdm(enumerate(dataset), leave=False, desc=f'Process {file}...'):
scenario = scenario_pb2.Scenario()
scenario.ParseFromString(bytearray(tf_data.numpy()))
scenario_id = scenario.scenario_id
tqdm.write(f"idx: {cnt}, scenario_id: {scenario_id} of {file}")
if f'{scenario_id}.pkl' not in existing_files:
map_infos = decode_map_features_from_proto(scenario.map_features)
track_infos = decode_tracks_from_proto(scenario)
dynamic_map_infos = decode_dynamic_map_states_from_proto(scenario.dynamic_map_states)
sdc_track_index = scenario.sdc_track_index # int
av_id = track_infos['object_id'][sdc_track_index]
# if len(track_infos['tracks_to_predict']) < 1:
# return
current_time_index = scenario.current_time_index
tf_lights = process_dynamic_map(dynamic_map_infos)
tf_current_light = tf_lights.loc[tf_lights["time_step"] == current_time_index] # 10 (history) + 1 (current) + 80 (future)
map_data = get_map_features(map_infos, tf_current_light)
# new_agents_array = process_agent(track_infos, tracks_to_predict, scenario_id, 0, 91) # mtr2argo
data = dict()
data.update(map_data)
data['scenario_id'] = scenario_id
data['agent'] = get_agent_features(track_infos, av_id, num_historical_steps=current_time_index + 1, num_steps=91)
with open(os.path.join(output_dir, f'{scenario_id}.pkl'), "wb+") as f:
pickle.dump(data, f)
if output_dir_tfrecords_splitted is not None:
tf_file = os.path.join(output_dir_tfrecords_splitted, f'{scenario_id}.tfrecords')
if not os.path.exists(tf_file):
with tf.io.TFRecordWriter(tf_file) as file_writer:
file_writer.write(tf_data.numpy())
def batch_process9s_transformer(input_dir, output_dir, split, num_workers=2):
signal.signal(signal.SIGINT, signal.SIG_IGN)
output_dir_tfrecords_splitted = None
if split == "validation":
output_dir_tfrecords_splitted = os.path.join(output_dir, 'validation_tfrecords_splitted')
os.makedirs(output_dir_tfrecords_splitted, exist_ok=True)
input_dir = os.path.join(input_dir, split)
output_dir = os.path.join(output_dir, split)
os.makedirs(output_dir, exist_ok=True)
packages = sorted(os.listdir(input_dir))
existing_files = sorted(os.listdir(output_dir))
func = partial(
wm2argo,
output_dir=output_dir,
input_dir=input_dir,
existing_files=existing_files,
output_dir_tfrecords_splitted=output_dir_tfrecords_splitted
)
try:
with multiprocessing.Pool(num_workers, maxtasksperchild=10) as p:
r = list(tqdm(p.imap_unordered(func, packages), total=len(packages)))
except KeyboardInterrupt:
p.terminate()
p.join()
def generate_meta_infos(data_dir):
import json
meta_infos = dict()
for split in tqdm(['training', 'validation', 'test'], leave=False):
if not os.path.exists(os.path.join(data_dir, split)):
continue
split_infos = dict()
files = os.listdir(os.path.join(data_dir, split))
for file in tqdm(files, leave=False):
try:
data = pickle.load(open(os.path.join(data_dir, split, file), 'rb'))
except Exception as e:
tqdm.write(f'Failed to load scenario {file} due to {e}')
continue
scenario_infos = dict(num_agents=data['agent']['num_nodes'])
scenario_id = data['scenario_id']
split_infos[scenario_id] = scenario_infos
meta_infos[split] = split_infos
with open(os.path.join(data_dir, 'meta_infos.json'), 'w', encoding='utf-8') as f:
json.dump(meta_infos, f, indent=4)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument('--input_dir', type=str, default='data/waymo/')
parser.add_argument('--output_dir', type=str, default='data/waymo_processed/')
parser.add_argument('--split', type=str, default='validation')
parser.add_argument('--no_batch', action='store_true')
parser.add_argument('--disable_invalid', action="store_true")
parser.add_argument('--generate_meta_infos', action="store_true")
args = parser.parse_args()
if args.generate_meta_infos:
generate_meta_infos(args.output_dir)
elif args.no_batch:
output_dir_tfrecords_splitted = None
if args.split == "validation":
output_dir_tfrecords_splitted = os.path.join(args.output_dir, 'validation_tfrecords_splitted')
os.makedirs(output_dir_tfrecords_splitted, exist_ok=True)
input_dir = os.path.join(args.input_dir, args.split)
output_dir = os.path.join(args.output_dir, args.split)
os.makedirs(output_dir, exist_ok=True)
files = sorted(os.listdir(input_dir))
os.makedirs(args.output_dir, exist_ok=True)
for file in tqdm(files, leave=False, desc=f'Process {args.split}...'):
wm2argo(file, input_dir, output_dir, output_dir_tfrecords_splitted)
else:
batch_process9s_transformer(args.input_dir, args.output_dir, args.split, num_workers=96)
|