bert_uncased_L-2_H-512_A-8_qnli
This model is a fine-tuned version of google/bert_uncased_L-2_H-512_A-8 on the GLUE QNLI dataset. It achieves the following results on the evaluation set:
- Loss: 0.3808
- Accuracy: 0.8406
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.4759 | 1.0 | 410 | 0.4065 | 0.8219 |
0.4 | 2.0 | 820 | 0.3840 | 0.8309 |
0.3491 | 3.0 | 1230 | 0.3808 | 0.8406 |
0.3005 | 4.0 | 1640 | 0.4054 | 0.8340 |
0.256 | 5.0 | 2050 | 0.4341 | 0.8334 |
0.215 | 6.0 | 2460 | 0.4468 | 0.8321 |
0.182 | 7.0 | 2870 | 0.5106 | 0.8288 |
0.1543 | 8.0 | 3280 | 0.5216 | 0.8298 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3
- Downloads last month
- 17
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for gokulsrinivasagan/bert_uncased_L-2_H-512_A-8_qnli
Base model
google/bert_uncased_L-2_H-512_A-8