|
--- |
|
library_name: transformers |
|
language: |
|
- en |
|
license: apache-2.0 |
|
base_model: google/bert_uncased_L-2_H-256_A-4 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: bert_uncased_L-2_H-256_A-4_mrpc |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: GLUE MRPC |
|
type: glue |
|
args: mrpc |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7475490196078431 |
|
- name: F1 |
|
type: f1 |
|
value: 0.835725677830941 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert_uncased_L-2_H-256_A-4_mrpc |
|
|
|
This model is a fine-tuned version of [google/bert_uncased_L-2_H-256_A-4](https://huggingface.co/google/bert_uncased_L-2_H-256_A-4) on the GLUE MRPC dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5344 |
|
- Accuracy: 0.7475 |
|
- F1: 0.8357 |
|
- Combined Score: 0.7916 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 256 |
|
- eval_batch_size: 256 |
|
- seed: 10 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| |
|
| 0.619 | 1.0 | 15 | 0.5956 | 0.6887 | 0.8146 | 0.7517 | |
|
| 0.5893 | 2.0 | 30 | 0.5835 | 0.7010 | 0.8179 | 0.7594 | |
|
| 0.5612 | 3.0 | 45 | 0.5597 | 0.7059 | 0.8171 | 0.7615 | |
|
| 0.5397 | 4.0 | 60 | 0.5398 | 0.7377 | 0.8320 | 0.7849 | |
|
| 0.5063 | 5.0 | 75 | 0.5358 | 0.7426 | 0.8336 | 0.7881 | |
|
| 0.476 | 6.0 | 90 | 0.5344 | 0.7475 | 0.8357 | 0.7916 | |
|
| 0.4361 | 7.0 | 105 | 0.5515 | 0.7451 | 0.8349 | 0.7900 | |
|
| 0.4014 | 8.0 | 120 | 0.5508 | 0.75 | 0.8365 | 0.7933 | |
|
| 0.3684 | 9.0 | 135 | 0.5901 | 0.7304 | 0.8254 | 0.7779 | |
|
| 0.3396 | 10.0 | 150 | 0.5755 | 0.7426 | 0.8276 | 0.7851 | |
|
| 0.3061 | 11.0 | 165 | 0.5943 | 0.75 | 0.8317 | 0.7908 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.2.1+cu118 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.20.3 |
|
|