bert_uncased_L-2_H-128_A-2_qqp

This model is a fine-tuned version of google/bert_uncased_L-2_H-128_A-2 on the GLUE QQP dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3371
  • Accuracy: 0.8482
  • F1: 0.8113
  • Combined Score: 0.8297

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 10
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Combined Score
0.4684 1.0 1422 0.4047 0.8017 0.7601 0.7809
0.3983 2.0 2844 0.3846 0.8136 0.7782 0.7959
0.371 3.0 4266 0.3736 0.8217 0.7890 0.8054
0.3511 4.0 5688 0.3561 0.8330 0.7976 0.8153
0.3338 5.0 7110 0.3568 0.8332 0.7990 0.8161
0.3199 6.0 8532 0.3526 0.8369 0.8028 0.8198
0.3067 7.0 9954 0.3513 0.8392 0.8046 0.8219
0.296 8.0 11376 0.3567 0.8361 0.8044 0.8203
0.2857 9.0 12798 0.3518 0.8407 0.8071 0.8239
0.2776 10.0 14220 0.3371 0.8482 0.8113 0.8297
0.2679 11.0 15642 0.3506 0.8446 0.8105 0.8276
0.2609 12.0 17064 0.3419 0.8511 0.8145 0.8328
0.2539 13.0 18486 0.3397 0.8524 0.8164 0.8344
0.2461 14.0 19908 0.3523 0.8525 0.8164 0.8344
0.2401 15.0 21330 0.3407 0.8546 0.8181 0.8363

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.2.1+cu118
  • Datasets 2.17.0
  • Tokenizers 0.20.3
Downloads last month
11
Safetensors
Model size
4.39M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for gokulsrinivasagan/bert_uncased_L-2_H-128_A-2_qqp

Finetuned
(50)
this model

Dataset used to train gokulsrinivasagan/bert_uncased_L-2_H-128_A-2_qqp

Evaluation results