mobilebert_sa_GLUE_Experiment_mnli

This model is a fine-tuned version of google/mobilebert-uncased on the GLUE MNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8609
  • Accuracy: 0.6111

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9907 1.0 3068 0.9408 0.5485
0.9094 2.0 6136 0.9065 0.5819
0.8828 3.0 9204 0.8969 0.5874
0.8627 4.0 12272 0.8821 0.5967
0.8429 5.0 15340 0.8743 0.6003
0.8207 6.0 18408 0.8663 0.6077
0.7989 7.0 21476 0.8665 0.6100
0.7789 8.0 24544 0.8751 0.6096
0.7603 9.0 27612 0.8620 0.6139
0.7425 10.0 30680 0.8813 0.6095
0.7238 11.0 33748 0.8913 0.6142
0.7063 12.0 36816 0.9026 0.6056
0.6891 13.0 39884 0.9267 0.5976
0.6721 14.0 42952 0.9072 0.6105

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.8.0
  • Tokenizers 0.13.2
Downloads last month
1
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Dataset used to train gokuls/mobilebert_sa_GLUE_Experiment_mnli

Evaluation results