mobilebert_sa_GLUE_Experiment_logit_kd_qqp_128
This model is a fine-tuned version of google/mobilebert-uncased on the GLUE QQP dataset. It achieves the following results on the evaluation set:
- Loss: 0.6884
- Accuracy: 0.7872
- F1: 0.7062
- Combined Score: 0.7467
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
---|---|---|---|---|---|---|
0.9518 | 1.0 | 2843 | 0.8352 | 0.7536 | 0.6530 | 0.7033 |
0.8249 | 2.0 | 5686 | 0.7766 | 0.7607 | 0.6219 | 0.6913 |
0.7847 | 3.0 | 8529 | 0.7625 | 0.7648 | 0.6402 | 0.7025 |
0.7498 | 4.0 | 11372 | 0.7551 | 0.7638 | 0.6197 | 0.6917 |
0.7137 | 5.0 | 14215 | 0.7387 | 0.7691 | 0.6545 | 0.7118 |
0.6762 | 6.0 | 17058 | 0.7165 | 0.7753 | 0.6720 | 0.7237 |
0.6373 | 7.0 | 19901 | 0.7042 | 0.7783 | 0.6765 | 0.7274 |
0.6045 | 8.0 | 22744 | 0.7075 | 0.7799 | 0.6902 | 0.7350 |
0.5729 | 9.0 | 25587 | 0.7233 | 0.7792 | 0.6639 | 0.7215 |
0.545 | 10.0 | 28430 | 0.7088 | 0.7805 | 0.7180 | 0.7493 |
0.5183 | 11.0 | 31273 | 0.6884 | 0.7872 | 0.7062 | 0.7467 |
0.4948 | 12.0 | 34116 | 0.7064 | 0.7869 | 0.7076 | 0.7472 |
0.4724 | 13.0 | 36959 | 0.7053 | 0.7884 | 0.7120 | 0.7502 |
0.4514 | 14.0 | 39802 | 0.7314 | 0.7903 | 0.7024 | 0.7464 |
0.4321 | 15.0 | 42645 | 0.7112 | 0.7891 | 0.7228 | 0.7560 |
0.4152 | 16.0 | 45488 | 0.7410 | 0.7909 | 0.7211 | 0.7560 |
Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.9.0
- Tokenizers 0.13.2
- Downloads last month
- 1
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Dataset used to train gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_qqp_128
Evaluation results
- Accuracy on GLUE QQPvalidation set self-reported0.787
- F1 on GLUE QQPvalidation set self-reported0.706