mobilebert_sa_GLUE_Experiment_logit_kd_pretrain_qnli

This model is a fine-tuned version of gokuls/mobilebert_sa_pre-training-complete on the GLUE QNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2158
  • Accuracy: 0.8984

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1418 1.0 819 1.0623 0.5054
1.1397 2.0 1638 1.0617 0.5054
1.1439 3.0 2457 1.0634 0.5054
1.1397 4.0 3276 1.0635 0.5054
1.14 5.0 4095 1.0643 0.5054
1.1399 6.0 4914 1.0611 0.5054
1.14 7.0 5733 1.0625 0.5054
1.0013 8.0 6552 0.3801 0.8420
0.3353 9.0 7371 0.2163 0.9030
0.2165 10.0 8190 0.2158 0.8984
0.1593 11.0 9009 0.2205 0.9057
0.126 12.0 9828 0.2291 0.9077
0.1049 13.0 10647 0.2323 0.9072
0.0903 14.0 11466 0.2676 0.8984
0.0819 15.0 12285 0.2377 0.9006

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
10
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Dataset used to train gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_pretrain_qnli

Evaluation results