mobilebert_sa_GLUE_Experiment_logit_kd_mrpc_256
This model is a fine-tuned version of google/mobilebert-uncased on the GLUE MRPC dataset. It achieves the following results on the evaluation set:
- Loss: 0.4961
- Accuracy: 0.6912
- F1: 0.7968
- Combined Score: 0.7440
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
---|---|---|---|---|---|---|
0.6315 | 1.0 | 29 | 0.5588 | 0.6838 | 0.8122 | 0.7480 |
0.6098 | 2.0 | 58 | 0.5552 | 0.6838 | 0.8122 | 0.7480 |
0.6099 | 3.0 | 87 | 0.5544 | 0.6838 | 0.8122 | 0.7480 |
0.6084 | 4.0 | 116 | 0.5541 | 0.6838 | 0.8122 | 0.7480 |
0.603 | 5.0 | 145 | 0.5497 | 0.6838 | 0.8122 | 0.7480 |
0.5758 | 6.0 | 174 | 0.5335 | 0.7059 | 0.8171 | 0.7615 |
0.4984 | 7.0 | 203 | 0.4961 | 0.6912 | 0.7968 | 0.7440 |
0.4329 | 8.0 | 232 | 0.5478 | 0.6814 | 0.7743 | 0.7278 |
0.3876 | 9.0 | 261 | 0.5450 | 0.6838 | 0.7861 | 0.7349 |
0.3286 | 10.0 | 290 | 0.5792 | 0.6814 | 0.7628 | 0.7221 |
0.2833 | 11.0 | 319 | 0.5819 | 0.6446 | 0.7249 | 0.6847 |
0.2611 | 12.0 | 348 | 0.6755 | 0.6936 | 0.7913 | 0.7425 |
Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.9.0
- Tokenizers 0.13.2
- Downloads last month
- 126
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Dataset used to train gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_mrpc_256
Evaluation results
- Accuracy on GLUE MRPCvalidation set self-reported0.691
- F1 on GLUE MRPCvalidation set self-reported0.797