mobilebert_sa_GLUE_Experiment_logit_kd_mrpc_128

This model is a fine-tuned version of google/mobilebert-uncased on the GLUE MRPC dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5213
  • Accuracy: 0.6740
  • F1: 0.7787
  • Combined Score: 0.7264

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Combined Score
0.6368 1.0 29 0.5564 0.6838 0.8122 0.7480
0.6099 2.0 58 0.5557 0.6838 0.8122 0.7480
0.611 3.0 87 0.5555 0.6838 0.8122 0.7480
0.6101 4.0 116 0.5568 0.6838 0.8122 0.7480
0.608 5.0 145 0.5540 0.6838 0.8122 0.7480
0.6037 6.0 174 0.5492 0.6838 0.8122 0.7480
0.5761 7.0 203 0.6065 0.6103 0.6851 0.6477
0.4782 8.0 232 0.5341 0.6863 0.7801 0.7332
0.4111 9.0 261 0.5213 0.6740 0.7787 0.7264
0.3526 10.0 290 0.5792 0.6863 0.7867 0.7365
0.3188 11.0 319 0.5760 0.6936 0.7764 0.7350
0.2918 12.0 348 0.6406 0.6912 0.7879 0.7395
0.2568 13.0 377 0.5908 0.6765 0.7537 0.7151
0.2472 14.0 406 0.5966 0.6863 0.7664 0.7263

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
124
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Dataset used to train gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_mrpc_128

Evaluation results