File size: 2,368 Bytes
fdf58f2
3fa246b
 
fdf58f2
 
 
 
 
 
 
 
 
 
 
 
 
 
3fa246b
fdf58f2
 
 
 
 
 
 
3fa246b
fdf58f2
 
 
 
 
 
 
3fa246b
fdf58f2
3fa246b
 
fdf58f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: mobilebert_add_GLUE_Experiment_logit_kd_sst2_256
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: GLUE SST2
      type: glue
      config: sst2
      split: validation
      args: sst2
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.7075688073394495
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mobilebert_add_GLUE_Experiment_logit_kd_sst2_256

This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE SST2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2641
- Accuracy: 0.7076

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.5438        | 1.0   | 527  | 1.4012          | 0.5814   |
| 1.364         | 2.0   | 1054 | 1.5474          | 0.5413   |
| 1.2907        | 3.0   | 1581 | 1.5138          | 0.5642   |
| 1.257         | 4.0   | 2108 | 1.4409          | 0.5665   |
| 1.2417        | 5.0   | 2635 | 1.4473          | 0.5929   |
| 1.2056        | 6.0   | 3162 | 1.2641          | 0.7076   |
| 0.6274        | 7.0   | 3689 | nan             | 0.4908   |
| 0.0           | 8.0   | 4216 | nan             | 0.4908   |
| 0.0           | 9.0   | 4743 | nan             | 0.4908   |
| 0.0           | 10.0  | 5270 | nan             | 0.4908   |
| 0.0           | 11.0  | 5797 | nan             | 0.4908   |


### Framework versions

- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.9.0
- Tokenizers 0.13.2