File size: 2,368 Bytes
fdf58f2 3fa246b fdf58f2 3fa246b fdf58f2 3fa246b fdf58f2 3fa246b fdf58f2 3fa246b fdf58f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: mobilebert_add_GLUE_Experiment_logit_kd_sst2_256
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE SST2
type: glue
config: sst2
split: validation
args: sst2
metrics:
- name: Accuracy
type: accuracy
value: 0.7075688073394495
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mobilebert_add_GLUE_Experiment_logit_kd_sst2_256
This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE SST2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2641
- Accuracy: 0.7076
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.5438 | 1.0 | 527 | 1.4012 | 0.5814 |
| 1.364 | 2.0 | 1054 | 1.5474 | 0.5413 |
| 1.2907 | 3.0 | 1581 | 1.5138 | 0.5642 |
| 1.257 | 4.0 | 2108 | 1.4409 | 0.5665 |
| 1.2417 | 5.0 | 2635 | 1.4473 | 0.5929 |
| 1.2056 | 6.0 | 3162 | 1.2641 | 0.7076 |
| 0.6274 | 7.0 | 3689 | nan | 0.4908 |
| 0.0 | 8.0 | 4216 | nan | 0.4908 |
| 0.0 | 9.0 | 4743 | nan | 0.4908 |
| 0.0 | 10.0 | 5270 | nan | 0.4908 |
| 0.0 | 11.0 | 5797 | nan | 0.4908 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.9.0
- Tokenizers 0.13.2
|