gokuls commited on
Commit
fdf58f2
·
1 Parent(s): ee106c9

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - glue
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: mobilebert_add_GLUE_Experiment_logit_kd_sst2_256
11
+ results:
12
+ - task:
13
+ name: Text Classification
14
+ type: text-classification
15
+ dataset:
16
+ name: glue
17
+ type: glue
18
+ config: sst2
19
+ split: validation
20
+ args: sst2
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.4908256880733945
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # mobilebert_add_GLUE_Experiment_logit_kd_sst2_256
31
+
32
+ This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the glue dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: nan
35
+ - Accuracy: 0.4908
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 128
56
+ - eval_batch_size: 128
57
+ - seed: 10
58
+ - distributed_type: multi-GPU
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - num_epochs: 50
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
67
+ | 1.5438 | 1.0 | 527 | 1.4012 | 0.5814 |
68
+ | 1.364 | 2.0 | 1054 | 1.5474 | 0.5413 |
69
+ | 1.2907 | 3.0 | 1581 | 1.5138 | 0.5642 |
70
+ | 1.257 | 4.0 | 2108 | 1.4409 | 0.5665 |
71
+ | 1.2417 | 5.0 | 2635 | 1.4473 | 0.5929 |
72
+ | 1.2056 | 6.0 | 3162 | 1.2641 | 0.7076 |
73
+ | 0.6274 | 7.0 | 3689 | nan | 0.4908 |
74
+ | 0.0 | 8.0 | 4216 | nan | 0.4908 |
75
+ | 0.0 | 9.0 | 4743 | nan | 0.4908 |
76
+ | 0.0 | 10.0 | 5270 | nan | 0.4908 |
77
+ | 0.0 | 11.0 | 5797 | nan | 0.4908 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.26.0
83
+ - Pytorch 1.14.0a0+410ce96
84
+ - Datasets 2.9.0
85
+ - Tokenizers 0.13.2