mobilebert_add_GLUE_Experiment_logit_kd_qqp

This model is a fine-tuned version of google/mobilebert-uncased on the GLUE QQP dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8079
  • Accuracy: 0.7570
  • F1: 0.6049
  • Combined Score: 0.6810

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Combined Score
1.2837 1.0 2843 1.2201 0.6318 0.0 0.3159
1.076 2.0 5686 0.8477 0.7443 0.5855 0.6649
0.866 3.0 8529 0.8217 0.7518 0.5924 0.6721
0.8317 4.0 11372 0.8136 0.7565 0.6243 0.6904
0.8122 5.0 14215 0.8126 0.7588 0.6352 0.6970
0.799 6.0 17058 0.8079 0.7570 0.6049 0.6810
386581134871678353408.0000 7.0 19901 nan 0.6318 0.0 0.3159
0.0 8.0 22744 nan 0.6318 0.0 0.3159
0.0 9.0 25587 nan 0.6318 0.0 0.3159
0.0 10.0 28430 nan 0.6318 0.0 0.3159
0.0 11.0 31273 nan 0.6318 0.0 0.3159

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
1
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Dataset used to train gokuls/mobilebert_add_GLUE_Experiment_logit_kd_qqp

Evaluation results