mobilebert_add_GLUE_Experiment_logit_kd_cola

This model is a fine-tuned version of google/mobilebert-uncased on the GLUE COLA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6744
  • Matthews Correlation: -0.0079

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Matthews Correlation
0.8111 1.0 67 0.6859 0.0
0.7968 2.0 134 0.6865 0.0
0.796 3.0 201 0.6835 0.0
0.7938 4.0 268 0.6813 0.0
0.7828 5.0 335 0.6768 0.0
0.7651 6.0 402 0.6750 0.0
0.7594 7.0 469 0.6960 0.0
0.7592 8.0 536 0.6800 0.0
0.7463 9.0 603 0.6789 0.0
0.7437 10.0 670 0.6795 0.0
0.7401 11.0 737 0.6745 -0.0079
0.7398 12.0 804 0.6744 -0.0079
0.7328 13.0 871 0.6813 0.0587
0.7321 14.0 938 0.6881 0.0794
0.7315 15.0 1005 0.6784 0.0615
0.7295 16.0 1072 0.6816 0.0385
0.7297 17.0 1139 0.6986 0.0503

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
1
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Dataset used to train gokuls/mobilebert_add_GLUE_Experiment_logit_kd_cola

Evaluation results