gokuls's picture
End of training
08e4514
metadata
license: apache-2.0
base_model: google/bert_uncased_L-8_H-512_A-8
tags:
  - generated_from_trainer
datasets:
  - massive
metrics:
  - accuracy
model-index:
  - name: bert_uncased_L-8_H-512_A-8_massive
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: massive
          type: massive
          config: en-US
          split: validation
          args: en-US
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8839153959665519

bert_uncased_L-8_H-512_A-8_massive

This model is a fine-tuned version of google/bert_uncased_L-8_H-512_A-8 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6061
  • Accuracy: 0.8839

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.4813 1.0 180 1.3295 0.7506
1.0577 2.0 360 0.7897 0.8318
0.6168 3.0 540 0.6254 0.8623
0.404 4.0 720 0.5679 0.8672
0.2787 5.0 900 0.5594 0.8647
0.1993 6.0 1080 0.5499 0.8746
0.1406 7.0 1260 0.5674 0.8706
0.1044 8.0 1440 0.5678 0.8770
0.0775 9.0 1620 0.5668 0.8829
0.0565 10.0 1800 0.5830 0.8829
0.044 11.0 1980 0.6016 0.8785
0.0342 12.0 2160 0.6061 0.8839
0.0298 13.0 2340 0.6151 0.8815
0.0247 14.0 2520 0.6126 0.8810
0.0208 15.0 2700 0.6156 0.8829

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.1