gokuls commited on
Commit
50c0fce
·
1 Parent(s): 7ae3a4d

End of training

Browse files
Files changed (2) hide show
  1. README.md +85 -0
  2. pytorch_model.bin +1 -1
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/bert_uncased_L-12_H-256_A-4
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - emotion
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: bert_uncased_L-12_H-256_A-4_emotion
12
+ results:
13
+ - task:
14
+ name: Text Classification
15
+ type: text-classification
16
+ dataset:
17
+ name: emotion
18
+ type: emotion
19
+ config: split
20
+ split: validation
21
+ args: split
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.934
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # bert_uncased_L-12_H-256_A-4_emotion
32
+
33
+ This model is a fine-tuned version of [google/bert_uncased_L-12_H-256_A-4](https://huggingface.co/google/bert_uncased_L-12_H-256_A-4) on the emotion dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.1750
36
+ - Accuracy: 0.934
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 64
57
+ - eval_batch_size: 64
58
+ - seed: 33
59
+ - distributed_type: multi-GPU
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - num_epochs: 10
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
+ | 0.9309 | 1.0 | 250 | 0.4057 | 0.905 |
69
+ | 0.3116 | 2.0 | 500 | 0.2348 | 0.923 |
70
+ | 0.1956 | 3.0 | 750 | 0.1963 | 0.9285 |
71
+ | 0.148 | 4.0 | 1000 | 0.1792 | 0.9305 |
72
+ | 0.1257 | 5.0 | 1250 | 0.1750 | 0.934 |
73
+ | 0.1014 | 6.0 | 1500 | 0.1738 | 0.931 |
74
+ | 0.0866 | 7.0 | 1750 | 0.1846 | 0.9335 |
75
+ | 0.0758 | 8.0 | 2000 | 0.1987 | 0.93 |
76
+ | 0.0674 | 9.0 | 2250 | 0.1897 | 0.9315 |
77
+ | 0.0614 | 10.0 | 2500 | 0.1917 | 0.9335 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.34.0
83
+ - Pytorch 1.14.0a0+410ce96
84
+ - Datasets 2.14.5
85
+ - Tokenizers 0.14.1
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1644a58dc7695161bdd81fac7e0a07489e07b8bdbc0dba41f6ef99c91e45be09
3
  size 70032561
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c917830564d54bfb8dc5e6886a6d10655f9ca7d3e301f2cf37022f8d6df290b1
3
  size 70032561